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Abstract 

We explored the syntactic information encoded implicitly by neural machine translation (NMT) 

models with different target languages, by training NMT models from English to six target 

languages: English (an autoencoder), Spanish, French, Arabic, Russian, and Chinese.  NMT 

models consist of a neural network encoder and decoder; we considered the NMT encoder state 

(a real-valued vector of activation values) as a connectionist model of the machine’s internal 

state after reading a given English word.  We used these NMT encoder states to predict ancestor 

constituent labels of the current word in a syntactic parse tree.  Regardless of the NMT encoder’s 

target language, all constituent label prediction models performed well above a per-word 

most-frequent-label baseline accuracy, suggesting that NMT models implicitly encode 

hierarchical syntax, despite being trained only on raw sentences.  Furthermore, the constituent 

label prediction models exhibited similar behavior regardless of the NMT target language. 

Because the NMT models for different target languages exhibited dramatically different 

translation qualities but still encoded similar syntactic information, our results suggest that NMT 

models rely heavily on non-syntactic information when producing translations.  Finally, we 

found that NMT models rely on explicit morphosyntactic cues (e.g. infinitives and 

complementizers) when extracting syntactic features such as embedded clauses and negation. 

Our results open up new areas of research in linguistic universals, first/second-language 

acquisition, unsupervised syntactic parsing, and hierarchical structures in connectionist models 

of cognition. 

Keywords: machine translation, neural networks, generative syntax, connectionism, 

computational linguistics, natural language processing, machine learning  
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Emergence of Hierarchical Syntax in Neural Machine Translation 

Modern machine translation systems use deep neural networks, a class of machine 

learning algorithms that “learn” to translate phrases and sentences based on large corpora of 

pre-translated sentences.  These neural machine translation (NMT) models have produced 

state-of-the-art results in both academia and industry; they are currently deployed in large-scale 

products such as Google Translate (Turovsky, 2016; Wu et al., 2016).  NMT systems are built 

upon artificial neural networks, computer algorithms that are often viewed as implementations of 

connectionist models of human cognition (McClelland, 2000).  While effective, NMT systems 

are difficult to interpret due to large numbers (often thousands) of interconnected nodes, with 

learning algorithms automatically adjusting weights between nodes.  Thus, previous work has 

investigated the types of information encoded implicitly within NMT systems, finding that NMT 

systems encode morphological, syntactic, and semantic information about source language words 

and sentences (Belinkov, Durrani, Dalvi, Sajjad, & Glass, 2017a; Poliak, Belinkov, Glass, & Van 

Durme, 2018; Shi, Padhi, & Knight, 2016). 

However, there is relatively little work studying information encoded within NMT 

systems cross-linguistically.  Existing cross-linguistic studies have focused either on low level 

morphological features such as part-of-speech (POS) or on general information content that only 

identifies broad distinctions between languages (e.g. clustering NMT sentence representations 

using correlation analysis; Belinkov, Màrquez, Durrani, Dalvi, & Glass, 2017b; Kudugunta, 

Bapna, Caswell, & Firat, 2019).  In this project, we assessed the ability of NMT models with 

different target languages to predict ancestor constituent labels of words, allowing us to focus 

specifically on syntactic information but at various levels within each syntax tree.  In this way, 
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we were able to evaluate whether NMT systems implicitly encode syntactic information 

regardless of target language and whether the types of encoded syntactic information differ 

across target languages.  Notably, our results allow us to evaluate whether connectionist models 

of language (e.g. neural network models) can consistently encode hierarchical linguistic 

structures despite their seemingly non-hierarchical network architectures, providing evidence for 

the capabilities and limitations of connectionist approaches to human cognition. 

Connectionism and Artificial Neural Networks 

For background, we first provide an overview of connectionist models of cognition, 

viewing artificial neural networks as connectionist models.  Connectionist approaches to human 

cognition claim that the human mind operates as a system of interconnected units, where each 

unit can be activated; when activated, units activate neighboring units in the network.  In 

connectionist theories, concepts are represented either by individual units (local representations) 

or by patterns of activation over sets of units (distributed representations).  For example, in a 

local representation, a unit representing “dog” would be activated upon seeing a dog. 

Connections between units are developed through some predefined “learning” algorithm 

(McClelland, 2000).  Traditional Hebbian learning proposes that when two units are activated 

simultaneously, the connection between the two units is strengthened. 

The process by which one concept activates nearby concepts (concepts sharing many 

connections) is called spreading activation.  Spreading activation has support from both 

behavioral and computational studies.  Participants are faster to respond to lexical decision tasks 

(identifying whether a given string is a word) when the presented word is semantically related to 

the previously-presented word (Neely, 1991).  For instance, a participant would respond more 
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quickly to the word “prince” after seeing the word “boy” than after seeing the word “hat.”  This 

priming effect can be interpreted as one concept (that of the first word) activating related 

concepts in the participant’s semantic memory, leading to faster reaction times for related words. 

Similarly, in semantic fluency tasks (listing examples of a given category, such as “animals”), 

the time between participant-produced words was found to correlate with the mean number of 

steps between the same words as produced by a computer randomly traversing a semantic 

network of words (Abbott, Austerweil, & Griffiths, 2012).  These results support the theory that 

human semantic memory functions as a network of interconnected units with activations 

spreading along the connections. 

Artificial neural networks provide additional evidence for the plausibility of connectionist 

models of cognition.  Similar to theoretical connectionist networks, artificial neural networks 

pass inputs through multiple layers of interconnected nodes to produce outputs.  Each node has 

an activation function, a function that outputs a real number based on the activations of 

connected nodes in the previous layer; the final output of the neural network is a function of the 

activations of the nodes in the final layer (see Figure 1 for a visualization of a simple neural 

network architecture).  A neural network that passes a single input directly through a set of layers 

to generate an output is called a feedforward neural network, and the state of a neural network at 

any given layer is the vector of real-valued activations of all nodes in the layer.  Neural networks 

have been used successfully in tasks ranging from image classification to machine translation 

(Schmidhuber, 2015). 
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Figure 1.  A visualization of a feedforward artificial neural network.  Vectors vi represent the 

neural network state at each layer. 

When training a neural network, connection weights in the network are adjusted using a 

learning algorithm called backpropagation, which seeks to minimize errors between the 

network’s predicted output and some provided “correct” output (Daumé III, 2012).  The neural 

network’s predicted output is computed by passing values forward through the network, and 

backpropagation propagates any errors backwards through the network layers to adjust 

individual connection weights between nodes.  Unfortunately, at an algorithmic level, 

backpropagation is not neurally plausible.  Backpropagation requires each neuron (node) to emit 

two signals: an output (passing activation values forward through the network) and an error 

(propagating error values backwards through the network); biological neurons have only one 

known mechanism for transmitting information, by sending an electrical signal called an action 

potential to connected neurons (Balduzzi, Vanchinathan, & Buhmann, 2015).  That said, several 

biologically plausible error-propagation algorithms have been proposed, computing weight 

adjustments directly from the global error rather than recursively propagating local errors 
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backwards through the neural network (Balduzzi et al., 2015; Bengio, Lee, Bornschein, Mesnard, 

& Lin, 2015).  At a cognitive level, error-propagation models are common in predictive 

processing models of cognition, which propose that people’s senses are used only to verify or 

contradict our predictions about the world (Clark, 2015).  According to predictive processing 

models, feedback from our senses allows us to constantly update our internal model of the world, 

analogous to updating connection weights when using backpropagation in neural networks. 

Neural Machine Translation (NMT) 

Then, NMT systems can be viewed as connectionist models of language.  NMT systems 

generally use an encoder-decoder framework consisting of two neural network models: the 

encoder, which forms a representation of the input sentence, and the decoder, which translates 

that representation into a sentence in the target language (Sutskever, Vinyals, & Le, 2014).  Both 

the encoder and decoder often use a type of neural network called a recurrent neural network. 

Recurrent neural networks (RNNs) allow each word in a sentence to be inputted consecutively, 

using the current input word and the previous output state to generate a new output state.  In this 

way, the RNN state is updated incrementally for each input word. 
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Figure 2.  A visualization of a simple RNN encoder-decoder NMT framework, translating the 

English sentence “he runs” to the Spanish sentence “él corre.”  Vectors hi represent encoder 

states, and vectors gi represent decoder states. 

As shown in Figure 2, the NMT encoder outputs the final RNN state once it reaches the 

end of the input sentence; this state is considered a vectorized representation of the entire input 

sentence.  The decoder then uses this final encoder state as its initial state.  The decoder 

generates a sentence in the target language by repeatedly producing words based on the 

previously-generated word and the previous decoder state.  The encoder-decoder framework can 

then be seen as a connectionist model of human language perception and production.  The NMT 

encoder “perceives” language by converting a sentence into a real-valued vector (the sentence 

representation), and the decoder “produces” a sentence in the target language based on the 

original sentence’s abstract vector representation.  Each intermediate encoder and decoder state 

vector represents a set of activation values over a set of nodes, simulating a connectionist 

network that updates node activations for each input or output word. 

Attention and Working Memory in NMT Models 

Building upon the simple RNN encoder-decoder framework, many modern NMT models 

use an attention mechanism, a computational and connectionist analog of human attention. 

Specifically, NMT attention frameworks allow the decoder to focus upon specific words in the 

source sentence when generating each decoder state (Luong, Pham, & Manning, 2015).  As 

shown in Figure 3, this attention mechanism is implemented in the decoder as an added context 

vector defined as a weighted sum of the states of the encoder at each word; weights are 

determined by the similarity of the encoder state at the source word to the decoder state at the 
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target word.   Described intuitively, source words contribute more heavily to the next output 1

word if their meaning is similar to the current state of the decoder. 

 

Figure 3.  A visualization of the decoder framework with attention, generating one translated 

word “Y” given the previous translated word “X.”  This process is repeated for each subsequent 

target word.  Vectors hi represent encoder states, and vectors g i represent decoder states. 

Word-by-word attention mechanisms in language processing are supported by behavioral 

studies, although these studies generally do not approach attention from an explicitly 

connectionist point of view.  It has been shown that participants are better able to recall a target 

word in a sentence when the word is a semantic focus of the sentence, implying that words are 

1 Similarity here is defined as the dot product between the encoder and decoder state vectors. 

Encoder state weights can be determined by other functions between the encoder and decoder 

state vectors, but the dot product has been found to perform equally well as or better than more 

generalized functions (Luong et al., 2015). 
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not weighted equally when processing language (Osaka, Nishizaki, Komori, & Osaka, 2002). 

These results are traditionally explained by theories of working memory, which have found that 

people can only store about seven items in working memory at any given time (Miller, 1956).  It 

is possible that only the words most relevant to meaning are stored in working memory.  Higher 

working memory capacity has been shown to correlate with performance on tasks such as 

ambiguous word resolution and with reading comprehension in young second-language-learning 

students, suggesting that working memory plays an active role in language comprehension 

(Chang, Wang, Cai, & Wang, 2019; Daneman & Carpenter, 1980). 

NMT models with attention can then be viewed as connectionist models of attention and 

working memory in language tasks.  Attention is represented by weighting the encoder states 

corresponding with each source word; a higher weight for a given word state is analogous to a 

greater amount of attention given to that word.  Each summed context vector is comparable to a 

mental representation of the source sentence, after factoring in human attentional processes. 

Similar to the human limitations of working memory, NMT models can use a local attention 

framework that limits the number of source words that can be considered when generating the 

weighted context vector (Luong et al., 2015). 

Linguistic Syntax and Connectionism 

Because this project studies the emergence of linguistic syntax in NMT models, we now 

turn to a discussion of hierarchical linguistic syntax in connectionist models of language. 

Because connectionist models emphasize non-hierarchical connections between units, 

connectionist approaches initially seem at odds with hierarchical linguistic syntax, which models 

structured relationships between words in sentences.  In particular, generative syntax posits that 
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sentences are generated by grammatical rules, such as a verb phrase (VP) becoming a verb plus a 

noun phrase (NP) in the predicate “eat the cookie” (Adger, 2015; Carnie, 2013, p. 6).  2

Generative syntax often results in hierarchical tree structures such as in Figure 4.  Sentences can 

be parsed into constituents, strings consisting of all children of some parent node in the tree. 

Evidence for constituent structure in language can be found in linguistic data; sentence 

constituents can be nested within one another as relative clauses, as in “The canary (that the cat 

(that grinned) ate) sang” (Catania, 1972).  Verbs agree with the head of the subject noun phrase 

constituent rather than the nearest noun according to linear distance, as in “The girls from Paris 

are singing,” where “are” agrees in number with “girls” instead of “Paris” (in contrast, the 

sentence “The girls from Paris is singing” is ungrammatical; Adger, 2015). 

 

2 Phrases such as “the cookie” are generally represented as determiner phrases (DPs) under the 

X-bar theory of syntax, which is the focus of Carnie (2013).  For the purposes of this paper, 

simpler grammatical rules will be considered, omitting features such as the voice phrase (little 

vP), the determiner phrase (DP), and many bar levels.  The remaining simpler grammatical rules 

are used in most natural language processing parse tree datasets. 
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Figure 4.  A syntax tree using generative grammar. 

Then, generative syntax may seem incompatible with connectionist approaches to 

cognition.  Connectionist approaches emphasize spreading activation with non-hierarchical 

relationships between units, while generative syntax posits hierarchical structures inherent to 

human language.  Schonbein (2012) formalizes this discrepancy as the thesis of linguistic 

structuring, which states that any successful form of language processing must recapitulate the 

hierarchical structures of language.  Under the thesis of linguistic structuring, connectionist 

models of language would need to encode hierarchical structures of language. 

Previous studies have shown that connectionist models of language can indeed adopt 

hierarchical internal structures.  Artificial neural networks have been found to separate their 

internal state space to reflect syntactic categories of the target language when recognizing formal 

languages (Schonbein, 2012).  Furthermore, RNN-based language models of English, which 

predict the next word in a piece of text, have been shown to store whether the current constituent 

state is a subordinate or main clause (Futrell, Wilcox, Morita, Ballesteros, & Levy, 2019).  In 

both studies, the neural network models were not explicitly provided with hierarchical structures, 

suggesting that connectionist models can learn hierarchical syntax based on sequential inputs 

alone. 

However, there is contrary evidence that these connectionist models are simply using 

syntax heuristics to produce the expected hierarchical results.  For instance, the subsequence 

heuristic assumes that the truth of any coherent subsequence within a sentence is implied by the 

truth of the original sentence.  The subsequence heuristic is typically accurate for English, but 

there are many sentences for which the heuristic does not work.  For example, the sentence “The 
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octopus near the dog swam” fails the subsequence heuristic because the subsequence “the dog 

swam” is not implied by the original sentence.  High performance English natural language 

inference models (identifying whether one sentence implies another) have been found to perform 

poorly on sentences that fail the subsequence heuristic (McCoy, Pavlick, & Linzen, 2019). 

Similarly, RNN-based language models of English perform poorly on datasets involving 

structure-sensitive linguistic phenomena such as long-distance subject-verb agreement and 

reflexive anaphora (Marvin & Linzen, 2018).  These results suggest that neural network models 

are able to employ syntactic heuristics that lead to high performance on common sentences but 

poor performance on syntactically complex sentences.  Thus it is unclear whether connectionist 

models of human language can fully reconstruct the hierarchical structures proposed by 

generative syntax. 

Linguistic Syntax in NMT 

The studies discussed previously find evidence and counter-evidence for generative 

syntax in neural network models of language by assessing the models’ performance on 

syntax-related language tasks.  Recent studies in NMT have tried to identify encoded syntax by 

directly assessing representations of source sentences (recall that the encoder updates its internal 

state vector after each input word).  These studies often compare the information contained 

within encoder state vectors (after reading a given word) with the information contained in a 

standard word embedding, a commonly-used vector representation of the word in natural 

language processing tasks.  For instance, using an NMT model with attention from English to 

multiple other languages, Belinkov et al. (2017b) found that the part of speech (POS) tag of a 

given source word could be predicted more accurately from the encoder state vector after reading 
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the word than from a standard word embedding.  This implies that NMT encoder states contain 

useful information about the context around a given word, disambiguating word senses such as 

“play” (verb) versus “play” (noun). 

Similar studies have found evidence for more global syntactic properties encoded within 

NMT models.  Shi et al. (2016) found that voice (active or passive), tense, and top level syntactic 

sequence (overall sentence structure) could be predicted from the final encoder state in NMT 

models without attention.  For example, the sentence “On Tuesdays, the dogs play” has active 

voice, present tense, and top level syntactic sequence PP-NP-VP (prepositional phrase-noun 

phrase-verb phrase).  Building on these results, Blevins, Levy, and Zettlemoyer (2018) found 

that a word’s parent, grandparent, and great-grandparent constituent label in a syntactic parse 

tree could be predicted from the state of an NMT encoder after reading the word.  These results 

indicate that NMT models encode hierarchical syntactic information, suggesting that 

connectionist models of language may implicitly recreate hierarchical linguistic syntax. 

The current project seeks to clarify the types of syntax present in NMT encoder states, 

identifying whether NMT systems encode syntactic information regardless of target language 

and whether the encoded syntactic information differs across target languages.  Similar to 

Blevins et al. (2018), we tested whether a word’s part-of-speech, parent, grandparent, and 

great-grandparent constituent label could be predicted from NMT encoder states after reading the 

word.  Extending on the previous work, we trained NMT models from English to a variety of 

target languages.  Belinkov et al. (2017b) found small but statistically significant differences in 

POS tag accuracy depending on an NMT model’s target language.  Training from an English 

source to six target languages (including one English-to-English autoencoder model), POS tag 
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accuracy followed a decreasing trend in the order: Spanish / French, Arabic, Russian, Chinese, 

then English.  Interestingly, the ordering between Spanish and French changed depending on 

NMT training dataset size.  The larger NMT training dataset resulted in smaller overall 

differences in POS tag accuracy between target language encoder states, suggesting that NMT 

target language may have little effect on the implicit encoding of syntactic information. 

Additionally, POS tag accuracy corresponded only loosely with overall translation quality, which 

followed the decreasing trend: English, Spanish, French, Russian, Arabic, then Chinese 

(Belinkov et al., 2017b).  These results indicate that NMT models do not rely heavily on 

syntactic information such as POS tags.  For instance, an English-to-English model is likely able 

to translate linearly word-by-word without encoding any syntax. 

In the current project (predicting part-of-speech, parent, grandparent, and 

great-grandparent constituent labels given NMT encoder states), we hypothesized that 

constituent label prediction accuracy scores would significantly exceed the baseline (most 

frequent label given the input word) accuracy regardless of the NMT model’s target language, 

replicating results from English-to-German NMT models (Blevins et al., 2018).   There is little 

research on the encoding of hierarchical syntax in NMT models cross-linguistically, so we 

assumed that encoding POS serves as an important precursor to encoding hierarchical syntax. 

Therefore, between target languages, we predicted approximately the same decreasing trend in 

accuracy as was found for POS tag accuracy in Belinkov et al. (2017b): Spanish / French, 

Arabic, Russian, Chinese, then English.  However, based on small effect sizes and inconsistent 

orderings between target languages depending on NMT dataset size, we hypothesized that there 
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would only be relatively small differences between target languages in constituent label 

prediction accuracy scores. 

Method 

We trained NMT models from English to six target languages: English (an autoencoder), 

Spanish, French, Russian, Arabic, and Chinese.  We then trained simple feedforward neural 

networks to predict ancestor constituent labels (POS, parent, grandparent, and great-grandparent) 

of words, given the NMT encoder state after reading the word.  We used constituent label 

prediction accuracy scores to measure the amount of syntactic information encoded by NMT 

models with different target languages.  

Datasets and Computation Resources 

NMT models were trained on the United Nations (UN) Parallel Corpus, using the fully 

aligned subcorpus of approximately 11 million sentences from UN documents translated to all 

six UN official languages: English, Spanish, French, Russian, Arabic, and Chinese (Ziemski, 

Junczys-Dowmunt, & Pouliquen, 2016).  For the UN dataset, we used the provided separation 

into training, evaluation, and test datasets. 

Syntax evaluation models were trained on tree-parsed sentences from the CoNLL-2012 

dataset containing sentences from English news and magazine articles, web data, and transcribed 

conversational speech (Pradhan, Moschitti, Xue, Uryupina, & Zhang, 2012).  As in Blevins et al. 

(2018), syntax evaluation models were trained on the CoNLL-2012 development dataset and 

tested on the test dataset.  A subset of the CoNLL-2012 training dataset was used as an 

evaluation dataset; the training, evaluation, and test datasets each contained approximately 
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160,000 English words.   All NMT and syntax evaluation models were trained using Google 3

Colab, which provides one free NVIDIA Tesla P100 graphics processing unit (GPU) to improve 

computation speed. 

NMT Models 

NMT models were trained using OpenNMT’s PyTorch implementation (Klein et al., 

2017).  Because not all of the target languages mark separations between tokens (words) using 

space characters, we used OpenNMT’s implementation of byte pair encoding for subword 

tokenization in all languages.   This method identifies tokens by initially separating all sentences 4

in the dataset for the given language into individual characters, then iteratively combining tokens 

that often occur together (Sennrich, Haddow, & Birch, 2016).  The resulting tokens are used as 

“words” in the given language.  Byte pair encoding has been shown to improve translation 

quality in NMT models (Sennrich et al., 2016). 

Each NMT model used a recurrent neural network (RNN) encoder-decoder framework 

with attention, as described in the introduction.  Following the methodology in Belinkov et al. 

(2017b) and Blevins et al. (2018), each NMT encoder and decoder consisted of a four-layer 

RNN, where each layer was a 500-dimensional long short-term memory (LSTM) layer.  An 

LSTM layer is a common variant of a simple RNN hidden layer that is designed to recognize 

long-distance dependencies in sequential data by encoding a cell state (encoding long-term 

3 The evaluation dataset was obtained by taking every eight sentences of the training dataset. 

4 Due to constraints on RAM and virtual memory, byte pair encoding for Chinese was based on a 

subset (approximately 1.8 million sentences) of the Chinese sentences in the UN training dataset. 

All other languages used the entire UN training dataset for byte pair encoding. 
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information) as well as the usual RNN hidden state (Hochreiter & Schmidhuber, 1997; Neubig, 

2017).  Our NMT models used dot-product global attention as described in the introduction. 

Each NMT model was trained for 11 epochs (approximately 2,000,000 steps) using the 

Adam optimization algorithm (Kingma & Ba, 2015).  The first 10 epochs used a learning rate of 

0.0002; the learning rate was halved every 30,000 steps during the final epoch.   The model with 5

the best performance on the evaluation dataset was used to generate syntax evaluation models. 

Each NMT model was evaluated on the evaluation dataset every 1000 steps, or every 64,000 

sentences. 

For reference, we also computed the BLEU score for each NMT model.  BLEU scores 

are commonly used in machine translation to measure how well a predicted translated sentence 

matches a provided reference translation; BLEU scores have been shown to correlate highly with 

human evaluations of translation quality (Papineni, Roukos, Ward, & Zhu, 2002).  BLEU scores 

were computed using the UN Parallel Corpus test set, providing a general metric for the 

translation quality of each NMT model. 

Syntax Evaluation 

The part-of-speech (POS), parent, grandparent, and great-grandparent constituent label 

for each word in the CoNLL-2012 dataset was predicted based on the state of the deepest LSTM 

layer in the NMT encoder after reading the given word.  Note that regardless of target language, 

constituent label predictions used sentences in English (the source language).  We made 

constituent label predictions based on the deepest encoder layer because deeper layers have been 

5 A neural network’s learning rate governs the amount that weights between nodes are changed 

for each step when training the network. 
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shown to perform better on constituent label prediction tasks (Blevins et al., 2018).  Furthermore, 

it is the deepest encoder layer that is sent to the decoder to produce a sentence in the target 

language.  Finally, both the hidden and cell states of the deepest LSTM layer were used to make 

constituent label predictions, even though only the hidden state of the LSTM is passed to the 

decoder in NMT.  The cell state is still used to generate future hidden states, and the cell state is 

designed to encode long-distance dependencies in sequences (sentences).  It then seems plausible 

that the cell state would encode syntactic information, so our constituent label prediction models 

received both hidden and cell states as input, resulting in input vectors of length 1,000 (500 

entries from each state). 

As in Blevins et al. (2018) and Belinkov et al. (2017b) , we used a simple feedforward 

neural network to make constituent label predictions.  Each feedforward network contained only 

one hidden layer with 500 nodes.  Constituent label prediction models of this type were trained 

for each type of label prediction (POS, parent, grandparent, and great-grandparent) and for each 

NMT model, where each NMT model was trained on a different target language.  Each 

constituent label prediction model was trained until convergence, where convergence was 

defined as 10 consecutive epochs with no improvement on the evaluation dataset.  To account for 

variation between constituent label prediction models based on random initialization of weights 

and shuffling of the training data, we trained 20 constituent label prediction models for each 

combination of label type and NMT model.  For each constituent label prediction model, we 

recorded constituent label prediction accuracy on the CoNLL-2012 test dataset. 

We computed a baseline score for each type of constituent label prediction by simply 

predicting the most frequent label given the current input word (e.g. given the current input word 
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“dog,” the most frequent POS tag would be “noun”).  This baseline score is the maximum 

possible accuracy for a deterministic model that only knows the current input word. 

Results 

Comparison to the Baseline 

We first assessed whether constituent label predictions using representations from each 

NMT model were significantly different from the baseline accuracy score.  For each combination 

of NMT model (trained towards a given target language) and constituent label prediction type 

(POS, parent, grandparent, or great-grandparent), we conducted a one sample t-test comparing 

the baseline accuracy to the mean accuracy of the 20 constituent label prediction models of the 

desired type.  We adjusted our p-value using the Bonferroni adjustment for 24 comparisons, one 

comparison for each combination of target language and constituent label prediction type.  The 

mean constituent label prediction accuracy was significantly different from the baseline for all 

combinations of target language and constituent label prediction type (adjusted p < 0.001 for all 

comparisons; see Figure 5 for mean accuracy scores compared to the baselines). 
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Figure 5.  Mean accuracy scores (based on 20 prediction models) with two standard deviations 

from the mean for the constituent label prediction tasks using representations from different 

NMT models.  Dashed lines represent baseline accuracy scores.  NMT models were trained 

towards six different target languages: Arabic (AR), English (EN; the autoencoder), Spanish 

(ES), French (FR), Russian (RU), and Chinese (ZH). 
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As hypothesized, all target languages aside from English resulted in accuracy scores well 

above the baseline for the grandparent and great-grandparent tasks.  All non-English target 

languages also performed slightly above the baseline for the parent task.  In contrast to Blevins et 

al. (2018) but in line with Belinkov et al. (2017b), all target languages performed slightly below 

the baseline for the POS task.  This result for POS may be because POS encodes less useful 

information for tasks such as machine translation; for instance, Belinkov et al. (2017b) found that 

models performed above the baseline if the task was modified to use semantic tags, a variant of 

POS that separates words into classes based on semantic rather than syntactic function. 

Furthermore, it should be noted that the baseline score is extremely high (~87%) for the POS 

prediction task.  Because the baseline score uses the majority label given the current word, the 

baseline model essentially knows which of the ~14,000 possible input words is the current word; 

each NMT representation is simply a 1000-dimensional vector representing the current encoder 

state.  The below-baseline POS accuracy scores could indicate that precise information about the 

current word is not encoded in each encoder state.  That said, high accuracy scores on the other 

prediction tasks indicate that the encoder states do encode syntactic information. 

Differences Between Target Languages 

Next, we assessed differences in constituent label prediction accuracy across NMT 

models with different target languages.  Assessing these differences required examining how 

variation between target languages compared to variation within different models trained on the 

same target language.  We used a one-way ANOVA for each constituent label prediction type 

(POS, parent, grandparent, and great-grandparent) to account for variation within models trained 

on the same target language.  While other work such as Belinkov et al. (2017b) used the 
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approximate randomization test to evaluate differences between models, pilot results suggested 

that one-way ANOVAs were more appropriate; see Appendix A for details (Padó, 2006).  Due to 

time and computing resource constraints, we could only train one NMT model for each target 

language, and thus we were unable to account for variance arising from different NMT models 

trained towards the same target language.  In other words, while we could account for variation 

between constituent label prediction models trained on the same NMT model, small differences 

between languages might be due to natural variation between NMT models trained on the same 

dataset. 

The one-way ANOVAs found significant differences between target languages for all 

four constituent label prediction tasks (p < 0.001 for all four label prediction types).  We used 

Tukey’s HSD post-hoc test to identify language pairs that differed significantly.  Only seven out 

of the 60 pairwise comparisons did not differ significantly (see Appendix B for mean accuracy 

scores and all reported significance levels between languages).  As predicted, English performed 

poorly on all four tasks (15–30% lower accuracy scores than all other target languages), 

supporting the hypothesis that English-to-English autoencoders do not rely heavily on syntactic 

information.  Consistent with Belinkov et al. (2017b), Chinese consistently performed worse 

than the other non-English target languages on all four tasks.  Loosely, non-English target 

languages tended to perform better on constituent label prediction tasks when the target language 

was more similar to English; for instance, Spanish and French performed better than Chinese and 

Arabic on all tasks. 

However, while there were significant differences between target languages on all four 

constituent label prediction tasks, the non-English target languages exhibited surprisingly similar 
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accuracy scores, particularly considering the wide range of BLEU scores (see Table 1 for BLEU 

scores for each target language).  The non-English target languages varied by less than 2% 

within each of the parent, grandparent, and great-grandparent prediction tasks.  Non-significant 

pairwise differences between target languages were unpredictable across tasks; for instance, in 

the great-grandparent task, French did not perform significantly differently from Russian or 

Arabic, and Russian did not perform significantly differently from Spanish.  These results 

indicate that the NMT models might encode similar syntactic information regardless of target 

language.  Even though significant differences between target languages often exist (which is 

unsurprising given that the languages are indeed different), effect sizes based on target language 

are small. 

Table 1 

BLEU Scores 

 

Note.  BLEU scores were computed both before and after detokenizing the predicted translations.

  Before detokenization, each token is treated as a separate word.  BLEU scores are on a 0–100 6

scale.  Differences from the raw BLEU scores reported by Belinkov et al. (2017b) are likely due 

6 The detokenized BLEU score was not computed for Chinese because words were generally not 

separated by spaces in the Chinese dataset.  After detokenization, Chinese word boundaries 

could not be identified. 
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to the byte pair encoding methodology used for subword tokenization in this study (see Method 

section). 

Similarities Between Target Languages 

To further test the hypothesis of similar syntactic information encoded across target 

languages, we considered performance when predicting individual constituent labels (e.g. noun 

phrase) for each NMT model, considering the constituent label predictions as the result of binary 

classification tasks.  For instance, when considering the noun POS tag, all POS tags would be 

separated into two categories: noun and not noun.  This operation (converting into a binary task) 

was performed on the existing constituent label predictions; new constituent label prediction 

models were not trained specifically for each binary classification task.  We computed F1 scores 

on each individual constituent label for each NMT model.  F1 scores are the harmonic mean of 

precision (fewer false positives) and recall (more true positives correctly identified).  If NMT 

models encoded similar syntactic information regardless of target language, then we would 

expect similar F1 scores for individual constituent labels in addition to the similar overall 

accuracy scores observed already. 

Indeed, individual constituent label  F1 scores correlated extremely highly between 

non-English target languages (all pairwise Pearson correlations r[47] > 0.93, p < 0.001 for the 

POS task; r[27] > 0.98, p < 0.001 for the parent task; r[25], r[22] > 0.99, p < 0.001 for the 

grandparent and great-grandparent tasks).  In other words, the models performed well or poorly 

on the same individual labels regardless of target language.  Figure 6 shows mean F1 scores for 

the five most common labels in each constituent label prediction task and for each NMT model. 

Significant differences in F1 scores were found between non-English target languages for nearly 
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every constituent label displayed in the figure (using one-way ANOVAs and the Bonferroni 

adjustment for 20 comparisons; see Figure 6 for significance levels for individual constituent 

labels).  However, similar to the overall accuracy scores, effect sizes were small between 

non-English target languages, and post-hoc Tukey’s HSD tests indicated no clear trends for 

which pairwise comparisons were significant. 
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Figure 6.  Mean F1 scores (based on 20 models) for individual constituent label predictions, 

treating the constituent label prediction as a binary classification task.  Bars indicate two 

standard deviations from the mean.  Rows indicate different constituent label prediction tasks 

(POS, parent, grandparent, and great-grandparent).  Columns indicate different individual 

constituent labels, sorted by decreasing frequency in the CoNLL-2012 test set; the five most 

frequent labels are displayed in the figure.  Each label’s frequency in the test set is displayed on 

its corresponding plot.  Asterisks indicate significant differences between non-English target 

languages (*p < 0.05; **p < 0.01; ***p < 0.001). 

In particular, the similar F1 scores did not appear to simply be the result of different label 

frequencies; there was only a loose relationship between F1 scores and label frequencies.  For 

instance, all non-English target languages performed similarly well when identifying noun 

phrase grandparent labels (25% of grandparent labels, F1 scores 0.59–0.60) and 

question-sentence grandparent labels (0.6% of grandparent labels, F1 scores 0.55–0.61), despite 

over a 20% difference in corresponding label frequencies.  The models performed well on 

several rare constituent labels, such as WH-prepositional phrase grandparent labels (0.04% of 

grandparent labels, F1 scores 0.80–0.94).  Mean F1 scores (averaged across non-English target 

languages) for all constituent labels and corresponding label frequencies are plotted in Figure 7. 

Because the correlation between F1 scores and label frequencies was only loose, effects of label 

frequency were not sufficient to explain the similarity of F1 scores across non-English target 

languages.  These results support the hypothesis that while NMT models trained towards 

different non-English target languages might encode statistically-significantly different syntactic 

information, these NMT models still generally encode very similar syntactic information. 
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Figure 7.  Mean F1 scores for individual constituent labels (averaged across non-English target 

languages) compared to label frequencies.  Each point represents an individual constituent label. 

Qualitative Analysis of Syntax Errors 

Because it seems that NMT models encode similar syntactic information regardless of 

target language, it would be helpful to gain a better understanding of the types of sentences for 
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which the NMT models encoded a low amount of syntax.  To do this, we turn to a qualitative 

analysis of sentences for which the great-grandparent constituent label prediction models 

exhibited high error rates.  We selected the great-grandparent constituent label prediction task 

because prediction models had the highest accuracy scores above the baseline for this task, 

indicating a large amount of learned syntax.  When computing average accuracy for each 

sentence (average of the great-grandparent constituent label accuracy scores for each word in the 

sentence), we took the average across the five non-English target languages; we used this 

average because there were high pairwise correlation scores for per-sentence accuracy between 

all non-English target languages (all correlations r[9472] > 0.88, p < 0.001; see Appendix C for 

the computed Pearson correlations in per-sentence accuracy scores for each pair of non-English 

target languages). 

Then, we considered the 50 sentences with the highest average great-grandparent 

accuracy scores and the 50 sentences with the lowest average great-grandparent accuracy scores. 

When identifying these sentences, we counted only sentences that we considered “complete” 

sentences, and we considered only sentences from the written news and magazine sources in the 

CoNLL-2012 dataset (e.g. we excluded transcribed conversational speech, to maximize 

similarity with the United Nations NMT training dataset).   The top 50 sentences all had average 7

great-grandparent constituent label accuracy scores above 90%, and the bottom 50 sentences all 

had scores below 35%.  Sample sentences from the top and bottom 50 sentences are shown in 

Table 2.  Linguistic patterns found in the top and bottom 50 sentences are compiled in Table 3. 

7 All complete sentence judgments were made by native speakers of English.  Excluded 

“sentences” included page numbers, document headers, and some titles of news articles. 
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Table 2 

Sample Sentences from the Top and Bottom 50 Sentences 

 

Note.  Mean great-grandparent constituent label accuracies are averaged across non-English 

target languages.  Null complementizers, null copulas, and null subjects are inserted and 

indicated by brackets.  8

Table 3 

8 Null subjects implied by infinitives and relative clauses are not included in Table 2. 
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Linguistic Features in the Top and Bottom 50 Sentences 

 

Note.  The top and bottom 50 sentences were selected based on great-grandparent constituent 

label prediction accuracy scores (averaged across non-English target languages). 

In general, the constituent label prediction models performed better on shorter sentences, 

which is unsurprising given that longer sentences are more likely to contain complex syntactic 

structures (e.g. compound and embedded sentences).  Additionally, the constituent label 

prediction models performed poorly on questions, which may be due to the relatively low 

number of questions in the United Nations NMT training dataset. 

More notably, the bottom 50 sentences contained a disproportionate number of null 

features.  These features omit words or morphemes that would indicate syntactic structure in a 

sentence.  For instance, null copulas omit forms of the verb “to be,” as in the sentence “He 

pronounced the homework [was] finished.”  Appositives, where two noun phrases are placed one 

after another to describe the same entity (e.g. “Grant, the star baker”), serve as relative clauses 
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with the usual explicit syntactic cues omitted (e.g. “Grant, [who is] the star baker”).  Of the 

bottom 50 sentences, 16 contained at least one null copula or appositive; the top 50 sentences 

contained none of either feature.  This suggests that when generating encoder states, NMT 

models typically do not identify syntactic structures based on non-explicit cues. 

However, the models performed well on complex syntactic structures containing explicit 

morphosyntactic cues.  They performed well on sentences containing infinitives (e.g. “to eat” or 

“to pillage”) and negation (e.g. “I did not eat”), exhibiting far more of these features in the top 50 

sentences than in the bottom 50 sentences (see Table 3).  Both infinitives and negation have clear 

morphosyntactic cues indicating sentence structure.  The “to” in each infinitive clearly 

introduces the infinitized verb, and the word “not” before a verb clearly indicates a negated 

clause.  These results suggest that NMT encoders rely on explicit morphosyntactic cues to 

extract syntactic structure from sentences. 

In fact, the NMT encoders were able to use morphosyntactic cues to identify embedded 

sentences.  An embedded sentence appears within another phrase (e.g. within the verb phrase 

“said that [sentence]”).  The phrase head which introduces an embedded sentence can appear 

before or after the embedded sentence (e.g. “Alex said [sentence]” versus “[sentence], said 

Alex”).  Because the NMT encoders were provided only with sentences stopping at a given 

word, they could not be expected to recognize embedded sentences where the corresponding 

phrase head appeared after the embedded sentence.  However, the models performed well on 

many sentences where the phrase head appeared before the embedded sentence, exhibiting nine 

such structures in the top 50 sentences (see Table 3).  In many of these sentences, the head and 
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complementizer (e.g. “said that” or “dogs that”) clearly indicate the beginning of an embedded 

sentence. 

Interestingly, the NMT encoders were often able to recognize embedded sentences even 

when there was a null complementizer introducing the embedded sentence, such as “that” 

omitted in “The dog wished [that] he was taller.” Of the nine embedded sentences in the top 50 

sentences, six had a null complementizer.  This result may partially be explained by verb bias, 

the tendency for certain verbs to be followed by particular types of phrases (Garnsey, 

Pearlmutter, Myers, & Lotocky, 1997).  For instance, the verb “prove” is more often followed by 

a sentence complement (e.g. “proved [that] the criminal was lying”) than a direct object (e.g. 

“proved the theorem”).  People are more likely to omit complementizers when the head verb 

biases heavily towards a sentence complement (Ferreira & Schotter, 2013); in these cases, the 

verb itself serves as a syntactic cue for the upcoming embedded sentence.  Of the six null 

complementizers in the top 50 sentences, five followed a sentence-complement-biased verb. 

Thus, it appears that NMT encoders are able to recognize embedded sentences using a 

combination of verb bias and explicit complementizers. 

Discussion 

In this study, we found that NMT models implicitly encode hierarchical syntax regardless 

of target language, as long as the target language differs from the source language.  Given the 

NMT encoder state after reading a given word, feedforward neural network models were able to 

predict the parent, grandparent, and great-grandparent constituent label of the word, with 

accuracy scores well above our provided baseline.  This extends the results of Blevins et al. 

(2018) for German NMT models to Arabic, Spanish, French, Russian, and Chinese NMT models 
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(all with source language English).  By considering NMT encoders as connectionist models of 

language perception and comprehension, high constituent label prediction scores indicate that 

connectionist models of language can implicitly encode similar information to hierarchical 

syntactic models of language. 

Importantly, the NMT models received no explicitly syntactic information in the training 

data; the models were trained only on raw sentences translated to both the source and target 

language.  As outlined in the introduction, this supports the thesis of linguistic structuring, which 

states that any successful model of language must recapitulate the hierarchical structures of 

language (Schonbein, 2012).  We found that connectionist models (NMT models) naturally 

encoded hierarchical structures despite their seemingly non-hierarchical network architectures. 

This suggests that generative syntax in the source language contains useful information for 

translation tasks; this syntactic information is recognized and encoded by the NMT model.  We 

found that NMT models rely on explicit morphosyntactic cues (e.g. infinitives) when encoding 

syntactic information. 

Effects of Target Language 

All five non-English target languages encoded a similar amount of syntax, even 

performing similarly to one another for predictions of individual constituent labels (e.g. noun, 

verb, and adjective phrases).  It is important to note that this does not necessarily indicate that the 

different target languages share an underlying syntactic structure; the decoder can use the 

encoded syntactic information in a variety of different ways, resulting in different syntactic 

structures for different target languages. 
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That said, although the encoded syntactic information might be used in different ways for 

different target languages, similar English syntactic information was encoded across target 

languages.  For instance, the English-to-Chinese model did not identify English verb phrases any 

better or worse than the NMT models for the other target languages.  This similarity in encoded 

syntactic information across target languages could suggest that there is some shared upper 

bound on the amount of syntactic information that is useful in translation tasks; however, this 

would not align with results finding that explicitly added syntactic information provides 

improvements to NMT systems (Chen, Huang, Chiang, & Chen, 2017; Wu, Zhou, & Zhang, 

2017).  Alternatively, the similar syntactic information in the NMT encoders could be a 

limitation of the encoders’ RNN (recurrent neural network) architectures.  Across target 

languages, the NMT encoders could be hitting an upper bound on the amount of syntactic 

information that they could extract from raw sentences.  Of course, this upper bound would 

depend on the encoder architecture used; optimal translation models would likely extract more 

syntactic information. 

Regardless of the cause of similar syntactic information in our NMT encoders, these 

similarities are particularly interesting considering the variance in actual translation performance 

between target languages.  Our NMT models ranged from exhibiting “significant grammatical 

errors” in Chinese (tokenized BLEU: 24.9) to “very high quality, adequate, and fluent 

translations” in Spanish (tokenized BLEU: 56.3; “Evaluating models,” 2020).  The wide range in 

translation quality paired with the similar constituent label prediction scores indicates that 

morphological and non-syntactic features have large impacts on translation performance. 
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For instance, a more direct mapping between language vocabularies (e.g. between 

English and Spanish compared to English and Chinese) likely increases translation quality 

between two languages.  Inflectional morphology (e.g. verb conjugation or noun pluralization) 

has been found to account for differences in performance between languages in language 

modeling tasks (predicting the next word in a sentence), but these results vary depending on the 

metric used for morphological complexity (Cotterell, Mielke, Eisner, & Roark, 2018; Mielke, 

Cotterell, Gorman, Roark, & Eisner, 2019).  It is then possible that morphological features play a 

significant role in translation tasks; NMT encoder states may then contain significant amounts of 

morphological information. 

Alternatively, semantic content may play the most prominent role in translation tasks; 

this would seem plausible given that the goal of most translation tasks is to convert semantic or 

pragmatic information from one language to another.  Indeed, Schwenk and Douze (2017) found 

that multilingual NMT encoder states clustered more based on semantic than syntactic similarity, 

indicating that semantic information may be more important than syntax in machine translation.  9

Then, NMT encoder states for different target languages may encode different semantic 

information, leading to differences in translation quality.  However, across target languages, 

Poliak et al. (2018) found inconsistencies for which target language’s encoder states resulted in 

the best performance on various semantic understanding tasks.  These results suggest that, like 

syntactic information, semantic information in NMT encoder representations may be similar 

across target languages.  Future research could investigate specific types of morphological and 

9 Multilingual NMT models train either from multiple source languages or to multiple target 

languages. 
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semantic information learned by NMT encoders, providing a better understanding of information 

contained in NMT encoder states cross-linguistically.  Future research could also investigate the 

impact of the NMT decoder in mediating translation quality across target languages; it is possible 

that the decoder accounts for more of the divergence in translation quality than the encoder. 

Limitations 

While this study found similar encoded syntactic information across NMT models trained 

towards different target languages, there are several limitations to our conclusions.  While our 

five non-English target languages (Arabic, Chinese, French, Russian, and Spanish) came from a 

relatively wide variety of language families, they had notable syntactic similarities.  Five of the 

six languages had default SVO (subject-verb-object) word order.  The only exception, Arabic 

(VSO default word order), still uses SVO in many sentences; SVO sentences were found to 

account for 48% of sentences in Arabic political speeches and 30% of sentences in Arabic 

magazine articles (Parkinson, 1981).  Similar word orders among target languages could lead to 

an overestimate of the similarity of syntactic information in NMT encoder states.  A consistently 

non-SVO language such as Japanese or Korean (both SOV) could lead the NMT models to 

encode different syntactic information. 

Additionally, our translation dataset (the UN Parallel Corpus) contained dramatically 

different types of sentences from our syntax evaluation dataset (the CoNLL-2012 dataset).  The 

UN Parallel Corpus consists of official records and documents from the United Nations, while 

the CoNLL-2012 dataset has sources ranging from the New Testament and printed news to web 

blogs and transcribed telephone conversations (Ziemski et al., 2016; Pradhan et al., 2012).  More 

similar datasets would likely increase overall constituent label prediction accuracy scores, 
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leading to increased amounts of observed syntax in NMT encoder states.  While it is possible 

that more similar datasets could affect similarities across target languages, there is little evidence 

that these similarities would entirely disappear.  Furthermore, our study demonstrates that syntax 

learned implicitly by NMT models trained in one domain (official government documents) can at 

least partially be transferred when the NMT model is applied to a different domain (e.g. 

conversational speech). 

Finally, our NMT encoders specifically used RNN architectures, which may have limited 

the amount of syntactic information that the NMT encoders could extract from raw sentences. 

For instance, we found that the NMT encoders relied on explicit morphosyntactic cues to 

identify features such as negation, embedded sentences, and infinitive phrases.  In some ways, 

this reliance on explicit syntactic cues is similar to sentence processing in people.  Many 

sentences are syntactically ambiguous before they are completed (notably garden-path sentences 

such as “The horse raced past the barn fell”), and people generally re-evaluate upon reading the 

disambiguating feature (Frazier & Rayner, 1982; Qian, Garnsey, & Christianson, 2018).  Thus, it 

may be implausible for NMT systems to identify non-explicit syntactic features given only 

partial sentences.  Compounding this problem, RNNs are unable to re-evaluate past inputs and 

hidden states upon reading disambiguating words.  In contrast, more recent NMT architectures 

called Transformers repeatedly process all words in the source sentence, allowing complex 

interactions between distant words (Vaswani et al., 2017).  The recent successes of Transformer 

models may be due partially to their ability to combine later information with representations of 

earlier words.  Then, Transformers would likely encode significantly more syntactic information 

than RNN-based NMT architectures.  That said, the Transformers’ repeated processing of all 
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words in every sentence has relatively few analogies to human cognitive processing; storing 

entire sentences word-by-word in working memory is unfeasible according to current theories of 

working memory. 

Implications and Future Work 

This study provides evidence that connectionist models of language implicitly encode 

syntactic information; it also provides preliminary evidence that similar syntactic information is 

encoded by NMT models regardless of target language.  Further research is required to assess 

whether the similarity of syntactic information in NMT models has deeper implications for 

cross-linguistic language cognition in general.  For instance, it could be found that similar 

syntactic structures are used in language comprehension and production across languages; some 

linguists propose a Universal Grammar that limits the possible structures in human language 

(e.g. Carnie, 2013, p. 23–27).  Such universal structures could include differentiation between 

word classes (e.g. nouns versus verbs) or hierarchically nested embedded sentences.  If all 

languages shared a substantial underlying syntactic framework, then we would expect NMT 

encoders to encode similar syntactic information regardless of target language.  However, our 

study does not necessarily provide strong evidence for Universal Grammar.  Our study 

demonstrates that similar English syntactic information is useful when representing sentences to 

be translated to a variety of target languages; this does not reflect the syntactic structure of the 

target languages themselves.  The NMT decoder simply uses the English syntactic information to 

make better translations in the target language. 

While our study provides limited insight into Universal Grammar structures, the fact that 

connectionist models can extract syntactic information from raw sentences alone has important 
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implications in a variety of disciplines.  Our results suggest that during language acquisition, 

people might be able to learn syntactic rules without any genetically-encoded linguistic 

capabilities.  Future research could evaluate whether the syntactic errors made by children 

acquiring multiple languages are similar to the syntactic errors made by NMT systems trained 

between those languages.  This would extend previous results finding that artificial neural 

network models learning verbs’ past tense forms follow similar patterns of development to 

children learning past tense forms (Rumelhart & McClelland, 1985).  Furthermore, similar 

syntactic performance across different target languages in NMT suggests that children might 

exhibit similar syntactic errors in one language regardless of the other language being acquired. 

This hypothesis is supported by findings that errors caused by first language interference account 

for less than 5% of syntactic errors in children learning a second language (although notably, 

these children were not learning the second language simultaneously with the first language; 

Dulay & Burt, 1974). 

Implicit syntax-learning in NMT also suggests that computers may be able to identify 

syntactic rules given only raw sentences.  Unsupervised syntactic parsing (extracting syntactic 

features from raw sentences alone) is an active area of research in natural language processing 

(He, Neubig, & Berg-Kirkpatrick, 2018; Reichart & Rappoport, 2009).  Researchers have 

successfully used unsupervised syntactic parsing to identify words’ POS tags in text and to 

identify constituent phrases in sentences (Hänig, Bordag, & Quasthoff, 2008). 

Finally, future research could investigate new ways of evaluating general information 

encoded within sentence representations cross-linguistically.  Our study specifically assessed 

syntactic information in NMT encoder states, but there has also been significant research into 
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cross-lingual sentence representations encoding all relevant information in a given sentence 

regardless of language (Chidambaram et al., 2019).  Oftentimes, these cross-lingual 

representations are generated using NMT representations (Schwenk & Douze, 2017; Eriguchi, 

Johnson, Firat, Kazawa, & Macherey, 2018).  Interestingly, NMT representations were found to 

cluster based on target language family when sentence representations were aligned in a shared 

space (using correlation analysis; Kudugunta et al., 2019).  These results indicate that while 

NMT encoder states may contain similar syntactic information across target languages, general 

information content may differ.  These comparisons of sentence representations across languages 

and tasks have implications for transfer learning research, which uses models trained on one 

language or task to improve another model’s performance on a different language or task (Ruder, 

Peters, Swayamdipta, & Wolf, 2019).  For instance, using representations from a pre-trained 

English model for some task could decrease the training time or training data required to train a 

model for a different language (oftentimes a low-resource language). 

Outside of computer science, similar or different overall mutual information between 

sentence representations across languages has implications for the hypothesis of linguistic 

relativity, which claims that people’s cognition (e.g. physical conceptions of time) is influenced 

by the language they speak (Boroditsky, Fuhrman, & Mccormick, 2011).  Differences between 

sentence representations across languages would suggest that different information tends to be 

considered “relevant” when a sentence is translated to different languages.  Of course, these 

results would be difficult to disentangle from inherent difficulties in preserving meaning when 

translating sentences between languages. 

Conclusions 
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This study has provided an initial exploration into implicit syntax encodings in NMT 

models cross-linguistically, providing evidence for the emergence of hierarchical structures in 

connectionist models of language.  Evidence for implicit syntax-learning can inform current 

research in natural language processing (particularly syntactic parsing) and language acquisition. 

Furthermore, similar syntactic information encoded by NMT models across target languages 

opens up new directions of research in cross-lingual natural language processing and the 

existence of universal grammar structures in language. 
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Appendix A 

Approximate Randomization Test for Significance Testing Between Languages 

Belinkov et al. (2017b) used the approximate randomization test, a type of permutation test, to 

assess the statistical significance of differences in constituent label prediction accuracy across 

target languages (Padó, 2006).  Given a pair of models, the approximate randomization test 

repeatedly and randomly shuffles the models’ per-sentence accuracy scores, determining 

statistical significance based on the number of trials in which the random shuffle results in a 

larger performance difference than the original empirical difference between the two models. 

Approximate randomization does not require independence assumptions between the two 

compared models or between individual (word-level) constituent label predictions.  The 

approximate randomization test only assumes approximate independence between sentence-level 

prediction accuracy scores.  Note that when using the approximate randomization test, accuracy 

scores are computed for each sentence in the test set, and these per-sentence accuracy scores are 

averaged to obtain an overall accuracy score.  In general, sentence-averaged accuracy scores 

computed in this study tended to be higher than the raw accuracy scores reported; this indicates 

that models exhibited higher accuracy scores on shorter sentences. 

However, the approximate randomization test can only make pairwise comparisons 

between models, so it cannot account for variance between constituent label prediction models 

trained on the same NMT representations (i.e. variance based on random initialization of weights 

for the feedforward neural networks and random shuffles of the training data).  The approximate 

randomization test often reported significant differences between constituent label prediction 

models trained on the same NMT representations; analogous to significant differences between 
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individual participants in behavioral studies, these differences do not reflect differences between 

the participant groups (in this case, different NMT representations). 
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Appendix B 

Constituent Label Accuracy Scores and Differences Between Target Languages 

Mean constituent label prediction accuracy scores are shown in Table B1.  All constituent label 

prediction models performed significantly differently from their corresponding baseline score 

(adjusted p < 0.001 for all comparisons).  One-way ANOVAs found significant differences 

between target languages for all four constituent label prediction tasks (F(5, 114) > 14,000, p < 

0.001 for all four label prediction types).  Using Tukey’s HSD (honestly significant difference) 

post-hoc test to identify language pairs that differed significantly for each task, 52 of the 60 

comparisons were significant with p < 0.001.  The eight remaining language pairs (with 

corresponding significance levels) are shown in Table B2. 

Table B1 

Mean Constituent Label Prediction Scores 

 

Table B2 
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Pairwise Significance Levels Between Target Languages 

 

Note.  Asterisks indicate significance.  All language pairs not listed differed significantly with 

adjusted p < 0.001. 
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Appendix C 

Correlations Between Target Languages in Great-Grandparent Accuracy Scores per Sentence 

Pearson correlations between non-English target languages in great-grandparent constituent label 

prediction accuracy scores for each sentence are shown in Table C1.  For reference, the plot for 

the least correlated language pair is shown in Figure C1. 

Table C1 

Pearson Correlations for Great-Grandparent Accuracy per Sentence 

 

 

Figure C1.  Mean Russian and Spanish great-grandparent accuracy scores for each sentence, 

where each dot represents a sentence. 


