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In this paper, we will provide an overview of the topology of real symmetric second-order
tensor fields, focusing on tensor fields in R2 and R3. These tensor fields have many applications
in physics, such as modeling physical stress in different directions at given points in space. Tensor
fields are also used in diffusion MRI brain imaging, to identify axon fibers and other structures
in the brain [1]. In section 1, we will define tensors and tensor field topologies, providing the
foundation for an in-depth study of symmetric second-order tensor field topologies in R2 and R3,
in sections 2 and 3 respectively. The majority of material in sections 2 and 3 is based on chapters
13 and 14 of Visualization and Processing of Tensor Fields edited by Weickert and Hagen [6, 7].
In general, we will focus on the characterization and computation of degenerate points in real
symmetric second-order tensor fields. Finally, we conclude in section 4 with a brief explanation
of tensor field applications to diffusion tensor imaging in neuroscience, justifying further study of
second order tensor field topology.

1 Tensor Field Topology
In this section, we define tensors, tensor fields, and the topology of a second order tensor field. This
paper will focus on real symmetric second order smooth tensor fields, which can be understood as
smooth assignments of symmetric linear maps L : Rn → Rn to each point in Rn. Section 1.1 will
cover the linear algebra background necessary to define tensors in section 1.2. Then, section 1.3
will justify the representation of type (1, 1) tensors as linear maps, and section 1.4 will justify the
representation of real symmetric second order tensors as symmetric linear maps. Finally, section
1.5 will define tensor fields and the topology of a second order tensor field.

1.1 Background: Linear Algebra
Before defining a tensor, we briefly review the concepts of vector spaces, linear maps, eigenvectors,
and dual spaces. For the most part, this section will be a collection of definitions, which will be
referred to in later sections.

A vector space V over a field F is a set of elements with a properly defined addition operation
(V ×V → V ) and scalar multiplication operation (F×V → V ). The precise requirements of these
two operations can be found in a standard linear algebra textbook such as [5]. Elements of V are
called vectors, and a set {e1, ..., en} ⊆ V is a basis of V if and only if every v ∈ V can be written
as a unique linear combination:

v = v1e1 + · · ·+ vnen where v1, ..., vn ∈ F

This representation of v leads to the common vector notation: v =

v1...
vn


Every basis of V has n elements, and we say that V has dimension n. However, it is important to
remember that the values v1, ..., vn depend on the choice of basis for V .

Next, given vector spaces U and V with corresponding dimensions m and n, a linear map is
defined as a function L : U → V satisfying L(αu0 +βu1) = αL(u0)+βL(u1) for all u0, u1 ∈ U and
all α, β ∈ F. Given bases for U and V , any linear map can be expressed as a unique n×m matrix
with values in F. The construction of this matrix representation can be found in linear algebra
textbooks. Extending upon linear maps, a multilinear map M : V1 × · · · × Vk →W is a map that
is linear separately in each variable. More formally, for each vi, if all other vj are held constant,
then M(v1, ..., vk) is a linear map of vi. The concept of multilinear maps will be important when
defining tensors.
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Next, given a linear map L : V → V , an eigenvector of L is a vector v ∈ V satisfying L(v) = λv
for some λ ∈ F. Then, λ is called the eigenvalue corresponding to the eigenvector v. Note that
any scalar multiple of v is also an eigenvector of L, and multiple eigenvectors can correspond to
the same eigenvalue λ.

Lastly, we define the dual space of an n-dimensional vector space V . First, a linear form on
V is a linear map ω : V → F. Linear forms are also called dual vectors or covectors. The dual
space of V is denoted V ∗, defined as the set of all linear forms on V . It can be shown that V ∗ is
an n-dimensional vector space over F, where addition and scalar multiplication are defined by:

(ω0 + ω1)(v) = ω0(v) + ω1(v)

(αω)(v) = αω(v)

In fact, when V = Rn (or any other Hilbert space1), then V is isomorphic to its dual space V ∗

[2]. For any vector space V , the dual of the dual space V ∗∗ is isomorphic to V . Finally, given any
vector space V with basis {e1, ..., en}, there exists a corresponding dual basis {ε1, ..., εn} such that
εi(ej) = δij , where δij is the Kronecker symbol:

δij =

{
0 if i 6= j

1 if i = j

1.2 Tensors
1.2.1 Definition and Components of a Tensor

Given an n-dimensional vector space V over a field F, an (r, s)-tensor is a multilinear map [4]:

T : V × · · · × V︸ ︷︷ ︸
r

×V ∗ × · · · × V ∗︸ ︷︷ ︸
s

→ F (1)

Then, we say that T has type (r, s) and order (or rank) r + s. We will show that given a basis
of V , T can be represented by nr+s values in F, called components of T . This gives rise to the
representation of T as an extended matrix with r + s indices (i.e. an n× · · · × n︸ ︷︷ ︸

r+s

matrix).

Suppose {E1, ..., En} is a basis of V and {E1, ..., En} is the corresponding dual basis of V ∗.
Here, we use capital letters with subscripts to represent vectors, and we use capital letters with
superscripts to represent elements of the dual space; superscripts here do not indicate exponen-
tiation. From now on, we will also use Einstein notation to represent sums; if an index appears
more than once in an expression, then the expression is summed over all possible values for that
index. For instance, a vector A1 ∈ V can be written as the linear combination:

A1 = ai11 Ei1 =

n∑
i1=1

ai11 Ei1

Note again that superscripts for a1 do not indicate exponentiation, but rather serve only as indices.
Now, we derive the nr+s components of T . By representing each input vector or covector of

T with respect to our defined bases, we have:

T (A1, ..., Ar, B
1, ..., Bs) = T (ai11 Ei1 , ..., a

ir
r Eir , b

1
j1E

j1 , ..., bsjsE
js)

Because T is multilinear, we can expand this expression into the sum of nr+s terms, one for each
possible choice of i1, ..., ir, j1, ..., js. Intuitively, we are repeatedly expanding with respect to each
subsequent input vector or covector; each expansion converts each term in the existing expansion
into n new terms. Written in Einstein notation, we have the expansion:

T (A1, ..., Ar, B
1, ..., Bs) = T (Ei1 , ..., Eir , E

j1 , ..., Ejs)ai11 · · · airr b1j1 · · · b
s
js

1A Hilbert space H is a vector space with a positive symmetric inner product 〈·, ·〉 such that the norm |v| =√
〈v, v〉 makes H a complete metric space. A complete metric space is a metric space in which every Cauchy

sequence is convergent.
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Note that all a and b values are determined entirely by the input vectors and covectors once the
bases have been defined. Thus, the tensor T is defined entirely by its value for each T (Ei1 , ..., Eir ,
Ej1 , ..., Ejs). We denote this value tj1,...,jsi1,...,ir

for each choice of i1, ..., ir, j1, ..., js. Essentially, this is
the value of T when one basis vector is chosen for each input parameter. There are nr+s distinct
ways to choose one basis vector for each input parameter, and thus T can be represented by the
nr+s different components tj1,...,jsi1,...,ir

with respect to the given bases.

1.2.2 Examples of Tensors

Now that we have defined tensors, we will briefly provide examples of mathematical concepts
expressible as tensors, motivating further study of tensors. As a basic example, scalars in F are
type (0, 0) tensors. Covectors in the dual space V ∗ are type (1, 0) tensors, mapping vectors to
elements of F. In contrast, vectors in V correspond to type (0, 1) tensors (mapping covectors to
elements of F), functioning as elements of V ∗∗, which is isomorphic to V .

Furthermore, bilinear forms such as inner products can be expressed as type (2, 0) tensors.
The determinant of an n×n matrix is an example of a type (n, 0) tensor [4]. Finally, linear maps
can be expressed as type (1, 1) tensors; these type (1, 1) tensors will be the focus of the remainder
of this paper. In the next section, we will prove the correspondence between type (1, 1) tensors
and linear maps.

1.3 Second Order Tensors as Linear Maps
This section will show that we can consider type (1, 1) tensors as linear maps from a vector space
to itself. Recall that a type (1, 1) tensor is a multilinear map T : V × V ∗ → F. As shown in the
previous section, given a basis for V , type (1, 1) tensors can be represented as n × n matrices;
these matrices are also used to represent linear maps L : V → V . In this section, we will provide
an isomorphism between type (1, 1) tensors and linear maps.

First, let T 1
1 be the set of all type (1, 1) tensors over the vector space V , and let L(V, V ) be

the set of all linear maps from V to itself. We define the function Φ : L(V, V )→ T 1
1 by:

Φ : L 7→
(
T : (A,B) 7→ B(L(A))

)
(2)

Intuitively, T applies L to the vector A and then applies the covector B, resulting in an element
of F as desired. We claim that Φ is an isomorphism.

First, we show that Φ is bijective. To show injectivity, consider some L1, L2 ∈ L(V, V ) such
that Φ(L1) = Φ(L2). Then, for all A ∈ V and B ∈ V ∗ we have:

(Φ(L1))
(
A,B

)
= (Φ(L2))

(
A,B

)
B(L1(A)) = B(L2(A))

Because this equation holds for all linear maps B : V → F, we must have L1(A) = L2(A). Then,
because the equation holds for all A ∈ V , we must have L1 = L2. Thus Φ is injective.

To show surjectivity, consider some T ∈ T 1
1 . Let {E1, ..., En} be a basis of V and {E1, ..., En}

the corresponding dual basis. Note that we will be using the Einstein summation convention
introduced in the previous section. Then:

T (A,B) = T (ajEj , biE
i)

= T (Ej , E
i)ajbi

Consider the linear map L with the matrix representation M (with respect to the given bases)
defined by Mij = T (Ej , E

i). Writing out the matrix M , we have:T (E1, E
1) · · · T (En, E

1)
...

. . .
T (E1, E

n) · · · T (En, E
n)
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Note that by the rules of matrix multiplication, we have for all A ∈ V :

L(A) = L(ajEj)

= Mija
jEi

= T (Ej , E
i)ajEi

Then, for all A ∈ V and B ∈ V ∗ we have:

(Φ(L))
(
A,B

)
= B(L(A))

= bkE
k
(
T (Ej , E

i)ajEi
)

= ajbkT (Ej , E
i)Ek

(
Ei
)

Because the dual basis ensures that Ek(Ei) = δik, we need only consider terms where i = k:

(Φ(L))
(
A,B

)
= ajbiT (Ej , E

i)

Note that this equation holds for any choice of bases for V and V ∗. Thus we have shown that
(Φ(L))

(
A,B

)
= T (A,B) for all A ∈ V,B ∈ V ∗, so Φ(L) = T . Therefore Φ is surjective.

Finally, we show that Φ is a homomorphism (i.e. Φ is linear). We see:

Φ(αL1 + βL2) =
(
T : (A,B) 7→ B

(
(αL1 + βL2)

(
A
)))

=
(
T : (A,B) 7→ αB(L1(A)) + βB(L2(A))

)
= αΦ(L1) + βΦ(L2)

Thus Φ is linear. Because Φ is a bijective homomorphism, Φ is an isomorphism.
The isomorphism Φ provides an explanation for the representation of type (1, 1) tensors as

linear maps. Note that given a type (1, 1) tensor T , Φ−1(T ) is the linear map L such that
T (A,B) = B(L(A)) for all A ∈ V,B ∈ V ∗. This paper will focus on type (1, 1) tensors, represent-
ing these tensors as linear maps.

1.4 Real Symmetric Second Order Tensors
The remainder of this paper will focus on second order tensors in the vector space V = Rn.
Because we will be using V = Rn, we have V ∼= V ∗, so type (1, 1) tensors are theoretically
equivalent to type (0, 2) and type (2, 0) tensors. Thus, this paper will consider real second order
tensors in general, represented as linear maps.

Furthermore, we will restrict our study to symmetric second order tensors. A symmetric
tensor is a tensor T that is invariant under any permutation of its vector arguments. Formally,
for every permutation σ ∈ Sr:

T (A1, ..., Ar) = T (Aσ(1), ..., Aσ(r)) (3)

Given any basis for V , it can be shown that symmetric tensors must have components satisfying
ti1,...,ir = tiσ(1),...,iσ(r) for all σ ∈ Sr. In other words, the indices i can be freely permuted. Thus,
in the case of a type (2, 0) symmetric tensor, the n2 components must satisfy ti1,i2 = ti2,i1 for all
0 < i1, i2 ≤ n.

In the next section, we will show that type (2, 0) real symmetric tensors can be represented as
symmetric linear maps. A symmetric linear map L : V → V satisfies 〈L(A1), A2〉 = 〈A1, L(A2)〉
for all A1, A2 ∈ V , where 〈·, ·〉 is an inner product operator. Given any orthonormal basis of V , the
matrix representation M of L is a symmetric matrix (i.e. MT = M), which greatly simplifies the
study of real symmetric second order tensors. Notably, real symmetric matrices have orthogonal
eigenvectors, and all eigenvalues of a real symmetric matrix are real.
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1.4.1 Symmetric Second Order Tensors and Symmetric Linear Maps

We now show that type (2, 0) real symmetric tensors can be represented as symmetric linear maps.
In fact, this proof holds for type (2, 0) symmetric tensors in any Hilbert space.

First, the Riesz representation theorem [2] states that if V is a Hilbert space with inner
product 〈·, ·〉, then there exists an isomorphism Ψ : V → V ∗ such that for all A1, A2 ∈ V :

Ψ(A1)
(
A2

)
= 〈A1, A2〉 (4)

Then, we define a function Θ mapping type (2, 0) tensors to type (1, 1) tensors:

Θ : T 0
2 7→

(
T 1
1 : (A,B) 7→ T 0

2 (A,Ψ−1(B))
)

(5)

Here, T 1
1 applies T 0

2 to the vectors A and Ψ−1(B). First, note that T 1
1 is a well-defined tensor (i.e.

T 1
1 is multilinear) because Ψ−1 is linear. Furthermore, Θ is bijective because Ψ−1 is bijective. We

also have that Θ itself is linear:

Θ(αT 0
2 + βT 0′

2 ) =
(
T 1
1 : (A,B) 7→ (αT 0

2 + βT 0′

2 )
(
A,Ψ−1(B)

))
=
(
T 1
1 : (A,B) 7→ αT 0

2

(
A,Ψ−1(B)

)
+ βT 0′

2

(
A,Ψ−1(B)

))
= αΘ(T 0

2 ) + βΘ(T 0′

2 )

Thus Θ : T 0
2 → T 1

1 is an isomorphism.
Then, we can define an isomorphism from type (2, 0) tensors to linear maps using the iso-

morphism Φ : L(V, V ) → T 1
1 found in Section 1.3 (Equation 2). As the composition of two

isomorphisms, Φ−1 ◦Θ : T 0
2 → L(V, V ) is an isomorphism. Written out entirely, we have:

Φ−1 ◦Θ(T 0
2 ) =

(
L such that for all A ∈ V,B ∈ V ∗ : T 0

2 (A,Ψ−1(B)) = B(L(A))

)
(6)

Finally, we show that Φ−1 ◦ Θ(T 0
2 ) is a symmetric linear map if and only if T 0

2 is a symmetric
tensor.

T 0
2 (A1, A2) = T 0

2 (A2, A1) ∀A1, A2 ∈ V
⇐⇒ T 0

2 (A,Ψ−1(B)) = T 0
2 (Ψ−1(B), A) ∀A ∈ V,B ∈ V ∗

⇐⇒ B(L(A)) = Ψ(A)
(
L(Ψ−1(B))

)
(by the way we defined T 0

2 )

⇐⇒ 〈Ψ−1(B), L(A)〉 = 〈A,L(Ψ−1(B))〉
(by the way we defined Ψ)

⇐⇒ 〈Ψ−1(B), L(A)〉 = 〈L(Ψ−1(B)), A〉
(because 〈·, ·〉 is symmetric)

⇐⇒ 〈A1, L(A2)〉 = 〈L(A1), A2〉 ∀A1, A2 ∈ V

Thus, Φ−1 ◦ Θ is also an isomorphism from type (2, 0) symmetric tensors to symmetric linear
maps (assuming V is a Hilbert space). Therefore, real symmetric second order tensors can be
represented by real symmetric n× n matrices given any orthonormal basis of V .

1.5 Tensor Fields and Tensor Field Topology
We are now able to define tensor fields and the topology of a second order tensor field. Given a
topological space X, a tensor field F sr : X → T sr assigns a type (r, s) tensor to each point in X.
This paper will consider only smooth tensor fields, tensor fields in which each component of the
tensor F sr (p) varies smoothly with respect to p.

Furthermore, the remainder of this paper will consider only real symmetric second order tensor
fields, which we will simply refer to as tensor fields. We will assume that X = V = Rn. Because
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real symmetric second order tensors can be represented as symmetric linear maps, we will generally
consider tensor fields as assignments of symmetric linear maps L : Rn → Rn to each point in Rn.

Then, the topology of a tensor field F consists of the eigenvectors and corresponding eigen-
values of the linear map associated with each point p ∈ Rn. Because real symmetric linear maps
have all real eigenvalues and orthogonal eigenvectors, these eigenvectors and eigenvalues com-
pletely determine each linear map, and thus they completely determine the tensor field F . Thus,
this definition for the topology of a tensor field is used only loosely; it is common to redefine the
tensor field topology to consider only the relevant features of the entire topology. We will now
turn to some of the common features used to define tensor field topologies.

1.5.1 Eigenvector Fields and Degenerate Points

The eigenvalues at each point p ∈ Rn can be ordered using the standard ordering of the real
numbers. Then, the ith eigenvalue is associated with the corresponding eigenvector, called the ith
eigenvector. Then, the ith eigenvector field maps each point p ∈ Rn to the ith eigenvector at p.

However, the ith eigenvector at p may not be well-defined if the linear map at p has at least
two equal eigenvalues (corresponding to at least two orthogonal eigenvectors). Thus, degenerate
tensors are defined as tensors whose associated linear map has at least two equal eigenvalues;
points associated with degenerate tensors in the tensor field are called degenerate points. An
isotropic tensor is a tensor whose associated linear map has all equal eigenvalues; when n = 2,
degenerate tensors are equivalent to isotropic tensors.

Then, we can equivalently define the topology of a tensor field as the set of n eigenvector
fields with corresponding eigenvalue fields, along with the set of degenerate points with associated
degenerate tensors. Because the tensor field is smooth, each eigenvector and eigenvalue field is
smooth at all points where the eigenvalue λi is unique.

1.5.2 Tensor Field Lines

Lastly, a tensor field line in an eigenvector field is a curve that is tangent to the direction of
the eigenvector field at all non-degenerate points. Because eigenvectors in eigenvector fields (in
contrast with vectors in vector fields) have no magnitude and always point in two directions
separated by 180◦, the existence and uniqueness of tensor field lines cannot be guaranteed given
an initial point p.

However, tensor field line integration can be formally defined using covering spaces and vector
field streamlines. Conceptually, the eigenvector field is covered by two normalized vector fields
with opposing directions, and vector field streamlines are projected onto tensor field lines using
the path lifting property [6]. The detailed construction of these tensor field lines is beyond the
scope of this paper, and we will generally assume that tensor field lines can be found in tensor
fields.

Finally, we note that tensor field lines can only cross at degenerate points. At non-degenerate
points, there is one unique tangent direction for any given eigenvector field. At degenerate points,
there are at least two orthogonal eigenvectors corresponding to the same eigenvalue; thus, the
eigenspace for the duplicate eigenvalue is at minimum two-dimensional, allowing for infinitely
many tangent directions. This allows multiple distinct tensor field lines to pass through the same
degenerate point. Along with degenerate points, tensor field lines are often used to characterize
the topology of a tensor field.

2 Topology of Two-Dimensional Tensor Fields
We have defined the topology of a tensor field as the collection of eigenvector and eigenvalue
fields, degenerate points, and degenerate tensors in the tensor field. This section will focus on
two-dimensional tensor fields (i.e. V = R2), studying types of degenerate points and methods of
simplifying the tensor field topology. Two-dimensional tensor fields have two associated eigenvector
fields, corresponding to the eigenvalues λ1 ≥ λ2 at each point p ∈ R2. We call these eigenvector
fields the major and minor eigenvector fields respectively.
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Figure 1: The tensor index of a path is the number of counterclockwise rotations made by the
eigenvectors of the tensor field, when traveling counterclockwise along the path. The tensor index
of the path above is − 1

2 . Lines in the figure represent tensor field lines, and double-sided arrows
represent eigenvector directions. Figure taken from [6].

In section 2.1, we will introduce the concept of the tensor index of a degenerate point. This
tensor index is helpful in characterizing sectors of a degenerate point, introduced in section 2.2.
Next, the invariant δ in section 2.3 is used to characterize and classify linear degenerate points in
section 2.4. Nonlinear degenerate points are addressed in section 2.5. Then, we consider how tensor
field topologies change over time (section 2.6) and how tensor field topologies can be computed
in practice (section 2.7). We address ways to simplify complex topologies (section 2.8) and ways
to track topology changes over time (section 2.9). This provides a broad overview of methods for
understanding the topology of two-dimensional tensor fields.

2.1 Tensor Index
First, we introduce the concept of a tensor index [3] in a 2D tensor field. The tensor index serves
as an important feature of 2D tensor field topology, assigning half-integer values (e.g. 0, 12 ,−

1
2 , 1)

to degenerate points in the tensor field.
In order to define the tensor index of a degenerate point, we first define the tensor index of a

simple closed path in the tensor field space R2. A simple closed path γ in R2 forms a continuous
loop in R2 that does not intersect itself except for its endpoints.2 If there are no degenerate points
along the path γ, then the tensor index of γ in the tensor field F is defined as the number of
counterclockwise rotations made by the eigenvectors of F when traveling once counterclockwise
along γ (see Figure 1). Because eigenvectors rotate smoothly along γ and eigenvectors have two
equivalent orientations (e.g. a half-rotation results in the original orientation because eigenvectors
are bi-directional), the tensor index must be an integer multiple of 1

2 . Additionally, because the
eigenvector fields of F are orthogonal to one another at all points along γ, the tensor index does
not depend on the choice of eigenvector field from which to pull eigenvectors.

It can be shown that any path enclosing no degenerate points has tensor index zero. Further-
more, the tensor index of any path enclosing a single degenerate point p is equal to the tensor index
of any other path enclosing only the same degenerate point [3]. We then say that p has tensor
index IF (p) equal to the tensor index of any of these paths. This definition is applicable only to
isolated degenerate points in the tensor field; an isolated degenerate point is a degenerate point
p such that there exists an open set M ⊂ R2 containing p where M contains no other degenerate
points. Non-isolated degenerate points cannot be enclosed by paths enclosing only one degenerate
point.

Finally, it can be shown that the tensor index of any path enclosing a finite number of degen-
erate points is equal to the sum of the tensor indices of the enclosed degenerate points. Because

2Formally, a simple closed path in R2 is a continuous function γ : [0, 1] → R2 such that γ(0) = γ(1) and γ is
injective when restricted to the domain [0, 1).
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Figure 2: An example of a hyperbolic, parabolic, and elliptic sector. Figure taken from [6].

the tensor index relies only on the direction of eigenvectors along the path γ but still encapsulates
information about the enclosed degenerate points, the tensor index is useful in understanding sta-
ble features of a tensor field topology. The next sections will further elaborate on the relationship
between an isolated degenerate point and its tensor index; degenerate points in two-dimensional
tensor fields are typically isolated [7]. For the remainder of section 2, isolated degenerate points
will be referred to simply as degenerate points.

2.2 Sectors and Separatrices of a Degenerate Point
Given the major or minor eigenvector field around an isolated degenerate point p, the tensor field
lines around p are characterized by a set of sectors, angular regions around p in which the tensor
field lines exhibit a consistent behavior. With the exception of foci and centers (addressed in
section 2.5.1), degenerate points have sectors that fall into three categories:

• Hyperbolic sectors, where each tensor field line deflects away from p.

• Parabolic sectors, where each tensor field line travels towards or away from p.

• Elliptic sectors, where each tensor field line begins and ends at p.

Figure 2 shows examples of the three types of sectors. For convenience, adjacent parabolic sectors
are always merged into one parabolic sector. We define a separatrix as a tensor field line on
the boundary of a hyperbolic sector; identifying boundaries between sectors will be addressed in
section 2.4.1.

A degenerate point is then characterized within the major or minor eigenvector field by its
sectors when traveling counterclockwise around the point. The foci and centers addressed in
section 2.5.1 are characterized by their lack of any of the three types of sectors. Assuming a
degenerate point p is not a center or focus, we can quantify the amount an eigenvector rotates
when moving counterclockwise through each sector around p:

• Hyperbolic sectors with angle θ rotate the eigenvector counterclockwise by θ − π.

• Parabolic sectors with angle θ rotate the eigenvector counterclockwise by θ.

• Elliptic sectors with angle θ rotate the eigenvector counterclockwise by θ + π.

Suppose p has nh hyperbolic sectors, nb parabolic sectors, and ne elliptic sectors with correspond-
ing angles αi, βi, and γi. Then, the tensor index IF (p) satisfies:

2πIT (p) =

nh∑
i=0

(αi − π) +

nb∑
i=0

βi +

ne∑
i=0

(γi + π)

Because the sum of the sector angles is equal to 2π, we have:

2πIT (p) = 2π − nhπ + neπ

IT (p) = 1 +
ne − nh

2
(7)

In fact, this equation holds for all degenerate points p, including focus and center points (which
have tensor index 1 and ne = nh = np = 0). Because the tensor index IF (p) depends only on
the tensor field F and the degenerate point p, we have that ne − nh is invariant with respect to
the eigenvector field chosen (major or minor). That said, different eigenvector fields at the same
degenerate point may still have different numbers of hyperbolic, parabolic, and elliptic sectors.
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2.3 Decomposing the Tensor Field and the Invariant δ

In this section, we will introduce ways of decomposing the tensor field around a degenerate point,
leading to the invariant δ, which is used to distinguish linear and nonlinear degenerate points.

2.3.1 Decomposing the Tensor Field

First, recall from section 1.4.1 that real symmetric second order tensors can be understood as
symmetric linear maps. For this section, we will assume a fixed orthonormal basis of R2, so each
symmetric linear map is represented by a 2 × 2 symmetric matrix M . Then, we can decompose
M into an isotropic part γI2 and a deviator part D:

M =

(
γ + α β
β γ − α

)
=

(
α β
β −α

)
+ γ

(
1 0
0 1

)
= D + γI2

Here, γ is the average of the two values on the diagonal ofM and I2 is the two-dimensional identity
matrix. Because the trace of a matrix is equal to the sum of its eigenvalues, γ also coincides with
the average of the two eigenvalues of M .

In the decomposition above, γI2 is indeed isotropic because both eigenvalues of γI2 are equal
to γ. Scalar multiples of the identity matrix are the only isotropic real symmetric tensors (be-
cause isotropic tensors have all equal eigenvalues and symmetric tensors have all real eigenvalues
with orthogonal eigenvectors). Recall from section 1.5.1 that in two-dimensional tensor fields,
degenerate tensors are equivalent to isotropic tensors.

Next, consider some degenerate point of the tensor field F . We can rewrite F such that our
chosen degenerate point lies at the origin (0, 0). Then, for each q ∈ R2 we can write the associated
tensor in F as the matrix:

M(q) = D(q) + γ(q)I2 =

(
α(q) β(q)
β(q) −α(q)

)
+ γ(q)I2 (8)

Here, α, β, and γ are real-valued functions of q, while M and D are matrix-valued functions of q.
Note that at degenerate points p, we have M(p) = λI2, so α(p) = β(p) = 0. Because (0, 0) is a
degenerate point by construction, we have α((0, 0)) = β((0, 0)) = 0. Finally, because adding scalar
multiples of the identity matrix does not affect the eigenvectors of a matrix, we have that a vector
v is an eigenvector at q if and only if v is an eigenvector of the deviator D(q). The eigenvalues of
D(q) are ±

√
α(q)2 + β(q)2.

2.3.2 The Invariant δ

We now introduce the invariant δ, using the partial derivatives of the decomposition found in the
previous section. Suppose p is a degenerate point and the tensor field F is decomposed around p
as defined in section 2.3.1. As in section 2.3.1, the degenerate point p now lies at the origin. We
define [6]:

δ = det

(
∂α
∂x

∂α
∂y

∂β
∂x

∂β
∂y

)∣∣∣∣∣
(x,y)=(0,0)

(9)

In other words, δ is the determinant of the Jacobian matrix at the origin for the function (x, y) 7→
(α((x, y)), β((x, y))). It can be shown that δ is invariant under any rotation of the tensor field’s
coordinate system [3].

The invariant δ is used to distinguish between two types of degenerate points: linear (δ 6= 0)
and nonlinear (δ = 0) degenerate points. In Delmarcelle’s original dissertation [3], Delmarcelle calls
these points simple degenerate points and multiple degenerate points respectively. The following
sections will study these two types of degenerate points.

2.4 Linear Degenerate Points
Linear degenerate points satisfy δ 6= 0, where δ is the invariant introduced in the previous section.
Using the notation from Equation 8, recall that the degenerate point of interest lies at the origin.
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Then, because δ 6= 0, by choosing a small enough neighborhood around the origin, the functions
α and β can be approximated by the linear functions:3

α((x, y)) ≈ α1x+ α2y

β((x, y)) ≈ β1x+ β2y (10)

Therefore, around the degenerate point (the origin), we can treat F as a linear tensor field, a
tensor field where each component depends linearly on q ∈ R2. Note that a linear tensor field has
only one degenerate point p where α(p) = β(p) = 0. In our case, the unique degenerate point is
at the origin.

2.4.1 Boundaries of Sectors: the Linear Case

In section 2.2, we defined hyperbolic, parabolic, and elliptic sectors around a degenerate point.
In this section, we show that boundaries between sectors can be computed relatively easily in the
linear case.

To begin, we show that the eigenvectors at a point q in a linear tensor field F depend only
on the angle between q and the x-axis. In other words, the eigenvectors are independent of the
distance between q and the origin. Suppose v is an eigenvector at point q ∈ R2. Using the notation
from Equation 8:

D(q) · v = λv

mD(q) · v = mλv ∀m ∈ R
D(mq) · v = mλv (D is linear because its entries α and β are linear)

Thus, v is an eigenvector at all scalar multiples of q, so the eigenvectors at q depend only on the
angle between q and the x-axis. We can then consider eigenvectors for each angle θ around the
degenerate point rather than for each individual point q. Thus, we consider the eigenvectors for:

Dθ = D((cos θ, sin θ)) =

(
α((cos θ, sin θ)) β((cos θ, sin θ))
β((cos θ, sin θ)) −α((cos θ, sin θ))

)
Then, we return to the topic of sector boundaries for linear degenerate points. It can be shown
that boundaries between sectors of linear degenerate points lie on radial directions, angles θ where
one of the eigenvectors also makes the angle θ with the x-axis (see Figure 3) [6]. Equivalently,
radial directions are angles from which tensor field lines approach the degenerate point along

straight lines. In order to find radial directions, we only need to find angles θ where
(

cos θ
sin θ

)
is an

eigenvector of Dθ. Equivalently:4∣∣∣∣∣∣∣∣((α((cos θ, sin θ)) β((cos θ, sin θ))
β((cos θ, sin θ)) −α((cos θ, sin θ))

)(
cos θ
sin θ

))
×
(

cos θ
sin θ

)∣∣∣∣∣∣∣∣ = 0

By substituting Equation 10, we eventually obtain:

tan 2θ =
β1 cos θ + β2 sin θ

α1 cos θ + α2 sin θ

3We assume here that α and β are both analytic functions, i.e. they can be expressed as power series in some
neighborhood around any point in their domain. Because δ 6= 0, at least one value in each row and each column of
the Jacobian matrix in Equation 9 must be nonzero. In other words, α and β both have at least one non-vanishing
coefficient for a first degree term in their power series around the origin, and together these non-vanishing terms
correspond to at least one first degree term for both x and y. Thus, we can choose a neighborhood around the
origin small enough that terms of degree greater than one are negligible in comparison to the terms of degree one
(e.g. x2 and y2 are negligible compared to x and y). Then, both α and β can be approximated using only their first
degree terms. In Equation 10, we have α1 = ∂α

∂x
, α2 = ∂α

∂y
, β1 = ∂β

∂x
, and β2 = ∂β

∂y
, where all partial derivatives

are evaluated at the origin.
4As in [6], the cross product of v1, v2 ∈ R2 is defined as the usual three-dimensional cross product when setting

z = 0 for both vectors. Then, ||v1 × v2|| = ||v1||||v2|| sin θ, where θ is the angle between v1 and v2. Equivalently,
||v1 × v2|| is the area of the parallelogram defined by v1 and v2. Assuming v1, v2 6= ~0, the magnitude of the cross
product is equal to zero if and only if v1 and v2 point in the same (or opposite) direction (i.e. v1 = λv2).
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Figure 3: Line segments represent eigenvector directions at each point. Bolded line segments indi-
cate radial directions around the degenerate point. In this figure, there are four radial directions.

By substituting u = tan θ, we obtain:

β2u
3 + (β1 + 2α2)u2 + (2α1 − β2)u− β1 = 0 (11)

Thus, there are up to three real solutions u = tan θ. Because the tangent function has period π,
each of these solutions corresponds to two radial directions: θ and θ + π.

Finally, for each of these pairs of radial directions, we show that one angle is a radial direction
in the major eigenvector field and the other angle is a radial direction in the minor eigenvector
field. First, note that θ and θ + π lie on opposite sides of the unit circle, but the angle of the
radial eigenvector is the same (because eigenvectors are bi-directional). Also note that if a point
q makes angle θ with the x-axis, then −q makes angle θ+π with the x-axis. Suppose v is a radial
eigenvector of both q and −q. We have that:

D(q) · v = λv

⇐⇒ −D(q) · v = −λv
⇐⇒ D(−q) · v = −λv (D is linear because its entries α and β are linear)

Recall from section 2.3.1 that every deviator matrix has one positive and one negative eigenvalue.
From the equation above, at −q (the angle θ + π), the radial eigenvector v corresponds with the
opposite sign eigenvalue from at q (the angle θ). Then, the isotropic part of the matrix adds a
constant value to both eigenvalues (without changing the eigenvectors) and thus does not change
which eigenvector is major or minor. Therefore, if the radial eigenvector v is a major eigenvector
for θ, then it is a minor eigenvector for θ + π, and vice versa. Because the eigenvector fields are
smooth (except at the origin, the only degenerate point) and the two eigenvalues are only equal
at the origin, all eigenvectors for the angle θ belong to one eigenvector field, and all eigenvectors
for the angle θ + π belong to the other eigenvector field.

Therefore, the solutions to Equation 11 each correspond to exactly one radial direction in
each eigenvector field (major and minor). Hence, every linear degenerate point has one, two, or
three radial directions in each eigenvector field. Because boundaries between sectors lie on radial
directions, linear degenerate points can have at most three sectors in any eigenvector field. As
a last note, recall that sector boundaries that border a hyperbolic sector are called separatrices.
By identifying sector boundaries of linear degenerate points, this section has also shown how to
identify the separatrices of a linear degenerate point.

2.4.2 Types of Linear Degenerate Point

As it turns out, much more can be said about the sectors of a linear degenerate point, particularly
using the invariant δ introduced in section 2.3.2. In his dissertation [3], Delmarcelle shows that if
δ 6= 0, then the tensor index IF (p) = 1

2 sign(δ). Combining this with Equation 7 from section 2.2,
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we obtain:
1

2
sign(δ) = 1 +

ne − nh
2

nh = 2− sign(δ) + ne (12)

Here, nh is the number of hyperbolic sectors, and ne is the number of elliptic sectors. Delmarcelle
also shows that when moving along a closed curve enclosing a single linear degenerate point,
eigenvectors rotate in a constant direction. Using these facts, we can characterize the two types of
linear degenerate point: wedge points (δ > 0, IF (p) = 1

2 ) and trisector points (δ < 0, IF (p) = − 1
2 ).

Note that because δ remains the same for both the major and minor eigenvector fields, a wedge
point is a wedge point in both eigenvector fields, and similarly for a trisector point.

2.4.3 Types of Linear Degenerate Point: Wedge Points

First, we consider some wedge point pw, a linear degenerate point where δ > 0. We claim that pw
has only one hyperbolic sector and no elliptic sectors. From Equation 12, we have nh = 1 +ne, so
it suffices to show that ne = 0. Suppose to the contrary that ne ≥ 1. Then, nh ≥ 2. From section
2.2, eigenvectors rotate counterclockwise in the elliptic sector. Because the direction of rotation is
constant around a linear degenerate point, and because eigenvectors in hyperbolic sectors rotate
clockwise when the angle of the sector is less than π, each hyperbolic sector must have angle
greater than or equal to π. This is a contradiction because there are at least two hyperbolic
sectors, and the elliptic sector has angle greater than zero. Therefore, pw has no elliptic sectors
and one hyperbolic sector.

Because we showed in section 2.4.1 that linear degenerate points have at most three sectors,
we have two possibilities:

• The degenerate point pw has one hyperbolic sector and no parabolic sectors. Then, pw has
one separatrix as shown in Figure 4a.

• The degenerate point pw has one hyperbolic sector and one or two parabolic sectors. Because
we combine adjacent parabolic sectors, pw has one one hyperbolic sector and one parabolic
sector. Because eigenvectors rotate counterclockwise in parabolic sectors, the hyperbolic
sector must have angle greater than or equal to π. In this case, pw has two separatrices as
shown in Figure 4b.

2.4.4 Types of Linear Degenerate Point: Trisector Points

Then, we consider some trisector point pt, a linear degenerate point where δ < 0. From Equation
12, we have nh = 3 + ne. Because we showed in section 2.4.1 that linear degenerate points have
at most three sectors, pt has three hyperbolic sectors and no other sectors. Recall from section
2.2 that a hyperbolic sector with angle θ rotates eigenvectors counterclockwise by θ− π. Because
eigenvectors rotate in a constant direction around a linear degenerate point, and because all three
sectors cannot each have angle greater than or equal to π, each hyperbolic sector must have angle
less than or equal to π. An example of a trisector point is shown in Figure 4c. A trisector point
has three separatrices.

2.5 Nonlinear Degenerate Points
Nonlinear degenerate points satisfy δ = 0, where δ is the invariant introduced in section 2.3.2.
Because the tensor field around a nonlinear degenerate point cannot be approximated as a linear
tensor field, it is difficult to characterize all nonlinear degenerate points. However, it can be
shown that a nonlinear degenerate point p is equivalent in the far field to a combination of
linear degenerate points whose tensor indices sum to IF (p). Formally, given an open set L ⊂ R2

containing a single nonlinear degenerate point, the tensors corresponding to points in L can be
replaced such that L contains only simple linear degenerate points and tensors on the boundary
and exterior of L remain unchanged [3].
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Figure 4: Examples of a wedge point with one separatrix (a), a wedge point with two separatrices
(b), and a trisector point (c). Figure taken from [3].

Figure 5: Examples of merging degenerate points. The left and right columns depict the major
and minor eigenvector fields. The top row depicts merging trisector points. The bottom two rows
depict merging wedge points, resulting in a center or focus point. Figure taken from [3].

Because nonlinear degenerate points can be replaced with multiple linear degenerate points
(and vice versa) at arbitrarily small scales, it follows that tensor fields that depend on some contin-
uous parameter (such as time) often exhibit merging of linear degenerate points and decomposing
of nonlinear degenerate points. Examples of merging degenerate points are shown in Figure 5.
Note that the tensor index of a path surrounding the region of interest is unchanged by merges
and decompositions.

2.5.1 Centers and Foci

Centers and foci are mentioned specifically here because they have no hyperbolic, parabolic, or
elliptic sectors. At a center point, there are no radial directions in the given eigenvector field,
but in the other eigenvector field, all angles are radial directions (a star point). At a focus point,
tensor field lines rotate around the degenerate point without ever reaching it, creating a swirl
pattern. Because the major and minor eigenvector fields are orthogonal, the two eigenvector fields
at a focus point correspond to two foci with opposite swirl direction. Both centers and foci have
tensor index one. A center and focus point are shown in Figure 5.
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Figure 6: Examples of unstable separatrices. Separatrices in close proximity to one another can
merge into one separatrix (connecting the two degenerate points, as shown in the middle case)
and can dramatically alter tensor field lines in the region. Figure taken from [6].

2.6 Structural Stability and Bifurcations
As explained in section 2.5, tensor fields that depend on some continuous parameter often exhibit
merging and decomposing of degenerate points. In this section, we assume that our tensor field
depends on the continuous parameter t. This section considers how a tensor field’s topology
changes with t. In general, we will not formally prove the results in this section, relying instead
on a qualitative study of eigenvector fields, as in [6].

2.6.1 Locally Stable and Unstable Structures

A degenerate point or separatrix is called locally stable if and only if it persists through small pert-
erbations in t. A nonlinear degenerate point p is not locally stable because it can be decomposed
into a set of linear degenerate points by changing an arbitrarily small region around p (intuitively,
then the degenerate point can decompose over an arbitrarily small perterbation in t).

However, individual linear degenerate points are locally stable. Linear degenerate points
cannot be decomposed into degenerate points with lower tensor index because tensor index values
are always half-integers. Then, both wedges and trisectors are locally stable, corresponding to
tensor indices 1

2 and − 1
2 respectively. An existing wedge or trisector point can only be altered by

merging with another degenerate point.
Finally, consider a separatrix connecting two degenerate points p0 and p1. Recall that a

separatrix bounds a hyperbolic sector. Thus, the sector on one side of the separatrix must be
hyperbolic. If the sectors on both sides of the separatrix are hyperbolic, then the separatrix
is locally unstable. If an arbitrarily small angular perterbation is made at any point along the
separatrix, then the connection between p0 and p1 is broken, as shown in Figure 6.

2.6.2 Bifurcations

Merges and decompositions of degenerate points are examples of bifurcations, changes in the tensor
field’s degenerate points or separatrices given a change in t. Bifurcations can be local or global,
either inducing changes restricted to a local region (where “local” depends on the area of interest)
or inducing changes to larger regions of the tensor field domain.

In general, because degenerate point merging and decomposition can occur in an arbitrarily
small region, degenerate point bifurcations are local. In particular, two important types of local
degenerate point bifurcations have yet to be mentioned: pairwise creations and pairwise annihi-
lations. In a pairwise creation event, a region containing no degenerate points transitions into a
region containing one wedge (index IF (p) = 1

2 ) and one trisector (index IF (p) = − 1
2 ) point. In

a pairwise annihilation event, a region containing one wedge and one trisector point transitions
into a region containing no degenerate points. Both of these transitions are topologically plausible
because they preserve the tensor index zero around the region of interest. A pairwise creation and
annihilation event is depicted in Figure 7.

In contrast to degenerate point bifurcations, most bifurcations involving separatrices are
global. Changes in separatrices affect essentially all tensor field lines in a region. As shown
in Figure 6, separatrices that pass close to one another may lead to global bifurcations.
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Figure 7: Examples of pairwise creation or annihilation events, which each involve one wedge and
one trisector point. The resulting nonlinear degenerate points on the right have tensor index zero,
and can thus be replaced by a region containing no degenerate points. Figure taken from [3].

2.7 Computing the Tensor Field Topology
In practice, it is difficult to precisely compute the degenerate points and separatrices of an arbi-
trary tensor field. For instance, when computing degenerate points, it may be tempting to simply
compute major and minor eigenvalues at all points on some grid, interpolating to find points where
the eigenvalues are equal. This is ineffective because the major eigenvalue is always greater than
the minor eigenvalue, so the interpolated eigenvalues will never be be equal. Alternatively, instead
of sorting into major and minor eigenvalues, it could be tempting to separate eigenvalues into two
groups by assuming that each eigenvalue group should be differentiable in R2; however, the under-
lying differentiability assumption is not met because eigenvalue fields may be non-differentiable
at degenerate points.

Furthermore, it is difficult to compute tensor field lines in an arbitrary tensor field. In vector
fields, streamlines are often computed in practice by repeatedly taking steps in the direction
of the vector at the current point. In vector fields, step size is equal to some small base step
size parameter multiplied by the current vector’s magnitude. However, eigenvectors do not have
magnitudes, and they always point in two opposing directions. Choosing the correct direction to
step in an eigenvector field is often solved by choosing the direction that minimizes the angle with
the previous step’s direction. Choosing an effective step size when integrating tensor field lines
remains an open problem, because eigenvectors can quickly change direction in the vicinity of a
degenerate point [6]. For this paper, we assume a small step size when integrating tensor field
lines in practice.

2.7.1 Techniques for Computing the Tensor Field Topology

This section outlines a method proposed by Delmarcelle [3] for computing a tensor field’s de-
generate points and separatrices. To find degenerate points, the tensor field is split into cells;
tensor field values are computed on the four corners of cells, and bilinear interpolation is used to
find tensor field values within the cell.5 This method treats the tensor field within each cell as a
linear tensor field, where the unique possible degenerate point can be computed using linear and
quadratic equations. Linear tensor fields were described in detail in section 2.4.

Because the interpolation method was linear, all degenerate points found this way are linear.
Then, the determinant δ (see section 2.3.2) is used to identify wedge and trisector points (see
section 2.4.2). The method from section 2.4.1 is used to identify radial directions and separatrices.
Finally, tensor field lines are integrated along the desired separatrix directions. The resulting
topology (degenerate points and separatrices) is used as the base topology for the simplification
methods introduced in the next section.

5Bilinear interpolation is an extension of linear interpolation used for a function f of two variables. Essentially,
linear interpolation is used along the top and bottom (y0 and y1) boundaries to obtain two interpolated values
f̂(x, y0) and f̂(x, y1) at the desired x. Then, linear interpolation is used again to find the interpolated value f̂(x, y)
at the desired y.
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Figure 8: An example of simplifying a tensor field topology using topology scaling. Figure taken
from [6].

2.8 Topology Simplification
When computing the topology of a tensor field, it is often desirable to extract only degenerate
points and separatrices that represent “important” features of the data. For instance, in datasets
where there are multiple structures at various scales, there are often many degenerate points and
separatrices, not all of which are relevant for any given purpose. In fact, some degenerate points
may be artifacts of bilinear interpolation or approximation in the numerical simulation. The
following sections will consider methods of simplifying the topology of a tensor field.

2.8.1 Topology Scaling

Topology scaling is a topology simplification method that assumes that complexities in the topol-
ogy are inherent to the dataset. In other words, the degenerate points and separatrices at small
scales are relevant to the dataset, but irrelevant at the desired scale.

In topology scaling, degenerate points are clustered into regions, where degenerate points in
any given region remain close enough to satisfy some proximity criterion. This initial step can use a
variety of clustering algorithms, which we will not describe here. Next, each region is transformed
such that it contains only a single degenerate point, leaving the tensor field values on the region
boundaries unchanged. Such a transformation is guaranteed to exist, as noted in section 2.5. The
resulting set of degenerate points is taken to be the set of “relevant” degenerate points of the tensor
field. Finally, radial directions are computed for each degenerate point, allowing sector boundaries
and separatrices to be computed as usual.

As a note, this method of topology simplification is highly dependent on the choice of proximity
criterion. This dependence makes intuitive sense; the set of “relevant” degenerate points should be
dependent on the desired granularity of the simplified topology. An example of topology scaling
is shown in Figure 8.

2.8.2 Continuous Topology Simplification

Continuous topology simplification is a simplification method that assumes that complexities in the
topology are insignificant to the actual tensor field topology. For instance, the complexities may
be caused by numerical approximations or the interpolation scheme. At a high level, continuous
topology simplification repeatedly combines wedge and trisector points using pairwise annihilation
events (see section 2.6.2).

Recall from section 2.7.1 that due to bilinear interpolation, all degenerate points found in
the original computed topology are linear (i.e. wedges or trisectors). In continuous topology
simplification, all degenerate points are assigned to pairs, each containing one wedge and one
trisector point. Pairs are assigned scalar values based on some desired criterion (e.g. low values
could indicate points that are close together). Then, pairs are sorted by this scalar value and
processed sequentially. During processing, a region is found that contains only the wedge and
trisector point in the pair. Because the overall tensor index of this region is zero, the region
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Figure 9: An example of simplifying a tensor field topology using continuous topology simplifica-
tion. Figure taken from [6].

can be transformed such that it contains no degenerate points and the tensor field values on the
boundary remain unchanged.

In this way, continuous topology simplification removes wedge and trisector points that do
not surpass some relevance threshold defined by the user. An example of continuous topology
simplification is shown in Figure 9.

2.9 Topology Tracking
The previous sections only outline methods of computing the topology of a static (not parameter-
dependent) tensor field. When considering parameter-dependent tensor fields such as in section
2.6, it is important to understand the changes within a tensor field with respect to a parameter
t. Visualizing the continuous change of a tensor field topology with respect to t is called topology
tracking.

One method of topology tracking is described in [6]. The parameter t is considered as an
additional dimension to the tensor field, resulting in a space-time grid of t (time) and the tensor
space (R2). Initially, it is assumed that the tensor field topologies for all values of t are computed
using the same bilinear interpolation scheme, using triangular cells. Each triangular cell is tracked
over time.

As explained in section 2.7.1, each cell at any given time can contain at most one degenerate
point, and this degenerate point must be linear. Because linear degenerate points are stable
(see section 2.6.1), a linear degenerate point on the interior of a cell cannot disappear over time,
assuming the tensor field changes smoothly with respect to t. Thus, each degenerate point can be
tracked over time on the interior of its cell.

However, degenerate points exhibit more interesting behavior when they reach the boundary
of a cell. In simple cases, the degenerate point may just be moving from one cell to another. Then,
the degenerate point is tracked within the new cell. Alternatively, the point may be involved in a
pairwise annihilation with a degenerate point from a neighboring cell. Similarly, pairwise creation
events can occur on the boundaries of cells, resulting in two degenerate points, one in each of two
neighboring cells. Pairwise creation and annihilation events must occur on the boundaries of cells
because both events involve more than one degenerate point (and each cell contains at most one
degenerate point). This constraint simplifies the detection of pairwise creation and annihilation
events, allowing all degenerate points and bifurcations to be tracked over time. Finally, as usual,
separatrices are integrated from each degenerate point at each value of t. An example of the
resulting topology evolution is shown in Figure 10.

3 Topology of Three-Dimensional Tensor Fields
The concepts introduced in section 2 are largely specific to two-dimensional tensor fields. This
section will consider degenerate features of three-dimensional tensor fields (i.e. V = R3), focusing
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Figure 10: An example of applying topology tracking to visualize the evolution of a two-
dimensional tensor field topology. Separatrices appear as surfaces, lines that change with respect
to the dimension t. Figure taken from [6].

on methods of identifying these degenerate features. In particular, degenerate tensors (at least two
equal eigenvalues) are equivalent to isotropic tensors (all equal eigenvalues) in 2D tensor fields; this
is clearly not the case in 3D tensor fields, where all tensors have three real eigenvalues (assuming
real symmetric tensors as before). The three eigenvector fields are called the minor, medium, and
major eigenvector fields, corresponding to eigenvalues λ1 ≤ λ2 ≤ λ3. A linear degenerate point
occurs when the minor and medium eigenvalues are equal; a planar degenerate point occurs when
the medium and major eigenvalues are equal. A triple degenerate point occurs when all three
eigenvalues are equal.

In section 3.1, we will justify an assertion that degenerate features in 3D form lines instead
of isolated points. In section 3.2, we will outline a method for computing degenerate points using
implicit functions, and in section 3.3, we describe a method for computing degenerate points
using a geometric interpretation of degenerate tensors. Finally, we connect degenerate points into
degenerate feature lines in section 3.4.

3.1 Dimensionality of Degenerate Spaces
In the two-dimensional tensor fields studied in section 2, degenerate spaces typically took the
form of isolated degenerate points (zero-dimensional). In this section, we will provide a high level
justification for this result, applying the same reasoning to conclude that degenerate spaces in
three-dimensional tensor fields are often one-dimensional.

First, the space S2 of real symmetric two-dimensional tensors has dimension three because
it takes three independent values to fully specify a real symmetric 2 × 2 matrix. Next, a real
symmetric two-dimensional tensor field F2 typically forms a subspace F2 ⊆ S2 with dimension
two because there are two dimensions in the tensor space R2, and each point in the tensor space is
assigned exactly one tensor. Finally, the set of degenerate tensors forms a subspace D2 ⊆ S2 with
dimension one because these tensors must have matrix representations λI2 (see section 2.3.1).

Then, the codimension of F2 in S2 is one, and the codimension of D2 in S2 is two. Note that
the set F2 ∩ D2 represents the set of degenerate points of F2. In typical scenarios [7], we have
codim(F2 ∩ D2) = codim(F2) + codim(D2) = 3. Although not a formal justification, we can refer
to the analogy in which a two-dimensional curve (codimension one, e.g. a plane) usually intersects
a one-dimensional curve (codimension two, e.g. a line) at isolated points (codimension three) in
three-dimensional space. Then, F2 ∩ D2 typically has dimension zero, and the degenerate points
of F2 typically form isolated points.

We then apply the same reasoning to three-dimensional tensor fields. The space S3 of real
symmetric three-dimensional tensors has dimension six because it takes six independent values to
fully specify a real symmetric 3 × 3 matrix. A real symmetric three-dimensional tensor field F3

typically forms a subspace F3 ⊆ S3 with dimension three because there are three dimensions in
the tensor space R3. The set of degenerate tensors forms a subspace D3 ⊆ S3 with dimension
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four; this dimensionality will be addressed in section 3.3.1. Then, in typical scenarios, we have
codim(F3 ∩ D3) = codim(F3) + codim(D3) = 3 + 2 = 5. Then, F3 ∩ D3 typically has dimension
one, so the degenerate points of F3 typically form lines.

Indeed, stable degenerate features of 3D tensor fields have often been found to form lines;
degenerate features forming isolated points, surfaces, or subvolumes are usually unstable, disap-
pearing under small perturbations [7]. Thus, the following sections will focus on finding degenerate
feature lines in 3D tensor fields. At a high level, this is often accomplished by first finding degen-
erate points, then connecting these points to identify degenerate feature lines.

3.2 Finding Degenerate Points Using Implicit Functions
The first method to finding degenerate points relies on implicit functions, functions which equal
zero if and only if the input tensor is degenerate. For instance, suppose a tensor T has matrix
representation M with eigenvalues λ1, λ2, and λ3. The discriminant D3(T ) is defined as:

D3(T ) = (λ1 − λ2)2(λ2 − λ3)2(λ3 − λ1)2 (13)

Note that D3(T ) = 0 if and only if T has at least two equal eigenvalues (i.e. T is degenerate).
Using the discriminant equation above to identify degenerate tensors would require all eigen-

values to be computed for each tensor, which is often computationally expensive. Instead, D3(T )
can be computed directly from the tensor’s matrix entries, using a degree six polynomial. For
the entire written out polynomial, see [7]. Then, roots of this polynomial D3(T ) correspond to
degenerate tensors. Unfortunately, in practice it is often difficult to find roots of this polynomial.
Because D3(T ) is always non-negative, its roots occur at its minima; thus, common root-finding
algorithms that detect changes in sign are ineffective. Furthermore, minimization algorithms such
as gradient descent are often ineffective because gradients have been found to be unstable except
when very close to the degenerate tensor [7].

Thus, it is desirable to further simplify the implicit function D3(T ). It can be shown that
D3(T ) can be written as the sum of the squares of seven cubic polynomials (again in terms of
the tensor’s matrix entries). As before, refer to [7] to see the written out polynomials. Because
each squared polynomial is non-negative, D3(T ) is equal to zero if and only if all seven cubic
polynomials are equal to zero. Finding roots of these cubic polynomials is more efficient than
the previous discriminant-based methods because we only need to find roots of cubic polynomials
(instead of roots of a degree six polynomial, and we still do not have to compute eigenvalues). In
particular, because the cubic polynomials can be both positive and negative, it is much simpler
to test for the existence of degenerate points in any given region.

In practice, the tensor space (R3) is separated into hexahedral (six-sided) cells. Roots of the
seven cubic polynomials are found on each face of each cell. This can be done using variations on
standard root-finding algorithms that attempt to satisfy all seven constraints simultaneously. Note
that these algorithms must be altered slightly because we are attempting to find zeroes of seven
polynomials, but there are only two independent directions on any given cell face. For instance,
the iterative method proposed in [7] minimizes the squares of all seven polynomials, while only
moving throughout the cell face. The details of this root-finding algorithm will not be described
here, but the algorithm is effective at finding degenerate points with high degrees of precision and
low false negative rates [7].

3.3 Finding Degenerate Points Using the Geometric Approach
None of the methods described in section 3.2 result in a system with the same number of equations
as unknowns, the types of systems that are ideal for most optimization algorithms. For instance,
using the discriminant alone minimizes one equation (the discriminant) over two unknowns (the
two independent directions on any given cell face). Using the seven cubic polynomials finds roots
of seven equations over the same two unknowns. In this section, we will describe a method that
finds degenerate points using a system of six equations with six unknowns.
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3.3.1 Geometric Representation of Degenerate Tensors

First, we describe a geometric interpretation of degenerate tensors, showing that degenerate tensors
are specified by four independent parameters. We will show that a tensor is degenerate if and
only if its matrix representation M can be written in the form M = sI3 ± V V T , where I3 is the
three-dimensional identity matrix, s ∈ R, and V ∈ R3.

(⇐) Suppose that M can be written M = sI3 ± V V T . Note that V V T represents a linear
transformation that projects the input vector onto V , then scales the resulting vector by ||V ||2.6
Thus, ±V V T has two zero eigenvalues, and the remaining eigenvalue is equal to ±||V ||2. Adding
sI3 simply adds s to every eigenvalue of ±V V T , so M has two eigenvalues equal to s and one
eigenvalue equal to s±||V ||2. BecauseM has at least two equal eigenvalues, the tensor represented
by M is degenerate.

(⇒) Suppose that a degenerate tensor has matrix representation M . If M has three equal
eigenvalues, then M = sI3 and we are done. Then we assume that M has exactly two equal
eigenvalues, which we will denote s. Suppose we subtract sI3 from M . Because this operation
subtracts s from every eigenvalue of M , the remaining matrix M − sI3 has two zero eigenvalues
and one nonzero real eigenvalue. In other words, M − sI3 projects all vectors onto a single line, so
we say M − sI3 represents a linear tensor. It can be shown that all real symmetric linear tensors
can be represented as ±V V T for some vector V . Then, we can write M = sI3 ± V V T .

This geometric representation of degenerate tensors allows us to identify all three eigenvalues
of a degenerate tensor. If M = sI3 + V V T , then the eigenvalues are s, s, and s + ||V ||2. If
M = sI3 − V V T , then the eigenvalues are s, s, and s − ||V ||2. This also allows us to easily
differentiate between linear degenerate points (minor and medium eigenvalues equal) and planar
degenerate points (medium and major eigenvalues equal). Geometrically,M scales vectors equally
in two dimensions, but differently in one orthogonal dimension. If this unequal dimension scales
more than the other two dimensions, then we have a linear degenerate point. If the unequal
dimension scales less than the other two dimensions, then we have a planar degenerate point.

3.3.2 Finding Degenerate Points Using the Geometric Representation

Similar to section 3.2, the tensor space (R3) is separated into hexahedral cells, and degenerate
points are found on each face of each cell. Finding degenerate points is equivalent to finding points
where T (x, y) can be written sI3 ± V V T . Thus, we are finding solutions of the form x, y, s, V ,
which consists of six independent unknowns (because V ∈ R3 and all other parameters are in
R). Because three-dimensional real symmetric tensors have six independent components (six
equations), we can create a system with six equations and six unknowns. These types of systems
with equal numbers of equations and unknowns typically have stable and isolated solutions.

Then, we can use any root-finding algorithm to compute degenerate points on a given cell face.
For instance, we can use an iterative root-finding algorithm, using the center of the cell face as an
initial guess and using some heuristic for the initial guesses s0, V0.7 These iterative root-finding
algorithms have been successful at finding degenerate points in practice, although they are less
stable than the implicit function methods (see section 3.2) when near a triple degenerate point
[7].

3.4 Computing Degenerate Feature Lines
As described in section 3.1, degenerate features in three-dimensional tensor fields typically form
lines. Thus, once we have identified degenerate points, these degenerate points must be connected
to form lines.

6Applying V V T to a vector A ∈ R3 results in the output vector V V TA. Because matrix multiplication is
associative and V TA ∈ R, the output vector is a scalar multiple of V . Thus, V V T has two zero eigenvalues
(corresponding to the plane normal to V ) and one nonzero real eigenvalue (corresponding to the direction of V ).
Because the trace of a matrix is equal to the sum of its eigenvalues, the remaining real eigenvalue is equal to ||V ||2.
Finally, by writing out V V T , we can see that V V T is symmetric.

7Reference [7] uses the Newton-Raphson method to find planar degenerate points, using the initial guesses
s0 = λ2+λ3

2
and V0 = e1

√
s0 − λ1, where λ1 ≤ λ2 ≤ λ3 are the eigenvalues at the cell face’s center (x0, y0). The

eigenvector e1 corresponds with the eigenvalue λ1.
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Figure 11: Examples of using the geometric representation to find degenerate features in randomly-
generated three-dimensional tensor fields. Lines represent computed degenerate feature lines, and
shading indicates areas close to these degenerate features (areas where the discriminant D3(T ) is
close to zero; see Equation 13). Figure taken from [7].

Using the method in [7], only cells containing exactly two degenerate points are initially
considered. The two degenerate points in each such cell are connected by a straight line segment.
These cells are marked as processed. Then, in each subsequent iteration, we consider a cell that
has at least one degenerate point; one of these degenerate points is connected to a degenerate
point in a nearby processed cell. If the current cell has more than one degenerate point, then the
degenerate point is chosen such that it minimizes the angle between the new line segment and the
processed cell’s existing line segment. This process results in degenerate feature lines throughout
the tensor space, as illustrated in Figure 11.

Of course, while this method is successful at identifying degenerate feature lines, there are sev-
eral drawbacks to the method. Because this method is designed to identify degenerate feature lines
specifically, when degenerate features form surfaces or subvolumes, the method produces unex-
pected degenerate feature lines around these surfaces and subvolumes. Additionally, this method
does not compute structures connecting degenerate feature lines, analogous to the separatrices
in section 2. These separating structures would likely form surfaces extending from degenerate
feature lines, and they can be computed by sampling tensor field lines starting at points along
each degenerate feature line.8

4 Conclusion
We have now outlined the topology of real symmetric second order tensor fields in R2 and R3.
Along with defining these topologies, we have characterized types of degenerate points in two-
dimensional tensor fields, providing methods for computing these degenerate points and their
associated separatrices. Additionally, we have described multiple ways of computing degenerate
points in three-dimensional tensor fields, connecting these points to identify degenerate feature
lines.

Before concluding this paper, we provide a brief description of tensor field applications to
diffusion tensor imaging in neuroscience [1], hoping to justify further study of tensor field topol-
ogy. In the brain, the Brownian motion of a water molecule can be modeled as a 3D Gaussian
distribution centered at the origin. This 3D Gaussian distribution is defined entirely by its 3× 3
covariance matrix D, and a diffusion MRI scan can approximately compute D for points through-

8Specifically, the tensor at some degenerate point along a degenerate feature line can be projected onto the plane
corresponding to the two equal eigenvalues. Then, we have a two-dimensional degenerate tensor, similar to those
studied in section 2, so separatrices can be computed extending from this point. This process can be repeated
for degenerate points along the entire degenerate feature line, allowing us to compute separating structures in
three-dimensional space.
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out the brain. Then, D is called the diffusion tensor at a given point. Note that D is a real
symmetric second-order tensor, so the set of diffusion tensors forms a real symmetric second-order
tensor field in R3, like those studied in section 3.

The eigenvectors and eigenvalues of the diffusion tensors in the brain provide useful informa-
tion about brain structures, because these eigenvectors and eigenvalues correspond to principle
directions of variance in the 3D Gaussian distribution. Directions of higher variance are directions
in which the water molecule is more likely to move. As an example, gray matter in the brain gen-
erally contains more barriers to water movement than ventricles containing cerebro-spinal fluid.
Thus, areas containing gray matter tend to have lower eigenvalues compared to ventricles, and
these areas can be identified using diffusion MRI scans.

Furthermore, in white matter areas of the brain, axon fibers tend to restrict movement per-
pendicular to the cell wall, promoting motion in the direction of the axon fiber. Thus, the diffusion
tensor at a point in an axon fiber has a higher eigenvalue in the direction of the fiber, with ap-
proximately equal (but lower) eigenvalues in the other two orthogonal directions. Notably, this
corresponds to a degenerate point with exactly two equal eigenvalues, the precise type of point
studied in section 3. Thus, computing the topology of a diffusion tensor field allows axon fibers
to be identified in diffusion MRI scans.

Of course, tensor fields have applications far outside of neuroscience, in fields ranging from
theoretical physics to computer graphics; a tensor can essentially represent any multilinear system
over a vector space. Studying the topology of tensor fields has valuable applications to a variety
of real world problems, and we hope that this paper has provided a useful introduction to the
topology of second order tensor fields.
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